In Vivo Assessment of Melanoma Peptide Vaccine Formulations

S. Neumann¹, R. Dunbar², S. Hook¹

¹School of Pharmacy, University of Otago, Dunedin, New Zealand; ²School of Biological Sciences, University of Auckland, Auckland, New Zealand

sarah.hook@otago.ac.nz

ABSTRACT SUMMARY

The ability of melanoma peptide vaccine formulations to induce cytotoxic T-cell responses was investigated in an *in vivo* model. Coupling of two short Trp2 peptides and consequent immunization with various adjuvants and formulations enhanced immune responses but did not meet expectations for a successful peptide vaccine for the treatment of melanoma.

INTRODUCTION

Therapeutic peptide vaccines, which target cancer cells explicitly, are an appealing alternative to conventional cancer chemotherapy. In this approach, tumor-associated antigens (TAA) were used to prime the immune system to react to cancer cells and destroy them.

Commonly used TAAs consist of 6-8 amino acids and were shown to induce an immune response *in vivo* but have the disadvantage of inducing immunological tolerance due to exogenous loading of peptides onto MHC class I molecules. Longer peptides (22-45 amino acids) have to be processed prior to their presentation on MHC molecules and are therefore more likely to induce a potent immune response. Here we investigate the effect of using a long peptide (long Trp2–peptide), incorporating both a CD8 and CD4 tumor epitope, to induce a cytotoxic T-cell response *in vivo*. To increase uptake by antigen presenting cells (APCs) and APC activation, the long Trp2 peptide was formulated in chitosan nanoparticles (CNP), Montanide ISA 51® or aluminium hydroxide (alum). We further analyzed the effect of co-administration of interferon-α (IFN-α) with the peptide vaccine.

EXPERIMENTAL METHODS

Formulations

Six to eight week old male C57BL/6 mice were immunized (s.c.) with 20 nmol of the long Trp2-peptide formulated in CNP, alum or Montanide ISA 51® on day 0 and 14 and mice were sacrificed on day 18.

CNP were prepared by the ionotropic gelation method using sodium sulfate as the gelation agent. Average particle size was 783 ± 46 nm. Montanide ISA 51® was emulsified with saline (PBS) in a 1:1 ratio using a stop-cock connector. In some experiments IFN-α (5x10⁴ IU) was added to formulations prior to administration and also injected s.c. every second day for 6 days.

CFSE labelling and transfer

Lymph node and spleen cells were harvested from C57BL/6 mice, incubated with 2.5 μM or 0.5 μM carboxyfluorescein diacetate succinimidyl ester (CFSE) and either pulsed with 20 nmol Trp2 peptide (CFSE^high^) for 2h or left untreated (CFSE^low^). Cells were washed, resuspended in PBS and transferred to recipient mice on day 17.

Flow cytometry analysis

Lymph nodes and spleens were harvested from recipient mice on day 18, single cell suspensions prepared and cells stained with antibodies: CD8 APC-Cy7 and MHC Pentamer PE (H-2Kb SYDFFVWL) after blocking Fc-receptors with 2.4G2 antibody. Flow cytometry was performed on a FACs Canto II. Specific cell lysis of CFSE-labelled splenocytes was determined using the following equation:

\[
\% \text{ cytotoxicity} = 100 - \left[\left(\frac{\text{peptide pulsed}_{\text{expt mice}}}{\text{peptide unpulsed}_{\text{expt mice}}} \right) / \left(\frac{\text{peptide pulsed}_{\text{naive mice}}}{\text{peptide unpulsed}_{\text{naive mice}}} \right) \times 100 \right]
\]

RESULTS AND DISCUSSION

To investigate the effect of a long peptide, comprised of a CD4 and CD8 epitope of Trp2, on the immune response *in vivo*, mice were immunized with the long peptide formulated in alum, montanide, CNP or with PBS. Cytotoxic T-cell responses in mice challenged with CFSE-labelled splenocytes pulsed with the long Trp2-peptide were surprisingly low and only resulted in 0-20% killing of the target-loaded cells (Figure 1). As a comparison, mice were immunized with the short CD4 (Trp288-102) and CD8 (Trp2180-188) peptides and cytotoxicity determined. The short peptides, when administered in montanide, led to a similar response, comparable to the long Trp2 peptide, with a slight increase in cytotoxicity.
To examine if the unexpectedly low response to immunization with the Trp2 peptides was caused by the lack of a strong adjuvant, we conducted another study and added IFN-α to the formulations. IFN-α has been reported to support cytotoxic T-cell responses when administered with peptide vaccines. However, we could not detect an increase in killing when IFN-α was co-administered with peptides (data not shown).

When cells were stained with a MHC pentamer that recognizes the T-cell receptor for Trp2₁₈₀₋₁₈₈ differences in cell populations were only statistically significant when the long Trp2-peptide was formulated in montanide (Figure 2). Addition of IFN-α failed to affect the proliferation of CD8⁺ pentamer⁺ populations.

CONCLUSION

Immunization with Trp2 peptides increased specific lysis of peptide pulsed cells and led to an increase of Trp2 specific CD8⁺ T-cells. However, responses were minimal and it needs to be determined if cytotoxic immune responses to the combination of the two tumor epitopes can be further improved through the use of a more potent adjuvant or formulation.

REFERENCES

ACKNOWLEDGMENTS

Financial support for S. Neumann from the University of Otago and the Maurice Wilkins Centre for Molecular Biodiscovery is gratefully acknowledged.