Intravaginal Gel for the Targeted Delivery of siRNA to T-cells as a Potential Strategy for HIV-1 Prevention

Sidi Yang, Jijin Gu, and Emmanuel A. Ho

Laboratory for Drug Delivery and Biomaterials, Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, R3E0T5, Canada

Sidi.Yang@ad.umanitoba.ca

ABSTRACT SUMMARY
The goal of this study is to develop and characterize a T-cell targeted nanomedicine for the active delivery of small interfering RNA (siRNA), which targets the viral genes or host factors involved in HIV-1 infection. This drug delivery system is designed for intravaginal administration as a potential pre-exposure prophylaxis to help women defend against HIV-1.

siRNA can be efficiently encapsulated into nanoparticles (NPs) with desirable particle size and release profile and siRNA-loaded NPs can be further conjugated with antibody for active T cell targeting. Resulting NPs are formulated into a vaginal gel dosage form to provide ease in self-administration and enhance retention within the vaginal tract.

INTRODUCTION
Human immunodeficiency virus/ acquired immunodeficiency syndrome (HIV/AIDS) is considered to be one of the most significant global health concerns in the 21st century [1]. Current HIV incidence appears to have a disproportionate impact on women [2]. Latest data revealed that women account for more than half of the infected population with unprotected sexual intercourse as the major mode of HIV transmission [2]. During the early stage of establishing vaginal entry and infection, HIV substantially invades intraepithelial vaginal Langerhans cells (a type of dendritic cells) and CD4+T cells through trauma or epithelial transcytosis [3]. Therefore, delivering preventative agents such as siRNA to target host or viral factors in these HIV-targeted cells may be an effective strategy to control and prevent HIV [4]. Carriers have been developed for the targeted delivery of siRNA into dendritic cells [5] and T cells [6]; however, none have focused on intravaginal targeted delivery. Therefore, our objective is to develop an intravaginal T-cell targeted system to deliver siRNA as a potential strategy for HIV-1 prevention.

EXPERIMENTAL METHODS
Non-specific siRNA was used as a model drug for the study of our drug delivery system. siRNA was first condensed by polyethyleneimine (PEI) and then encapsulated into NPs by a double-emulsion evaporation method using the biodegradable di-block copolymer, poly(lactic-co-glycolic acid)- polyethylene glycol (PLGA-PEG). Particle size and zeta potential were characterized by dynamic light scattering. Encapsulation efficiency (EE%) was determined with fluorescence-labeled siRNA using fluorescence spectroscopy. Release studies were determined in PBS (pH 7.4) at 37 °C. NPs were conjugated to anti-human anti-CD4 antibody (Ab) via the activation of N-Hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Antibody conjugation efficiency (ACE%) was determined by subtracting unconjugated antibody from the total. Resulting antibody-conjugated NPs (NP-Ab) were then formulated into a 1% hydroxyethyl cellulose (HEC) vaginal gel and the NP-loaded gel was characterized in terms of viscosity and NP release from the gel. Student’s t-test (unpaired, two-sample, unequal variance with two-tailed distribution) was performed on all results with P <0.05 considered significant. Data shown are expressed as mean ± standard deviation.

RESULTS AND DISCUSSION
The formulation of siRNA-loaded NPs was optimized in terms of particle size, zeta potential, EE% and release profile. The results showed that NPs formulated with 20 mg/mL of polymer had the smallest particle size and highest EE%; however, this formulation failed to achieve a sustained release profile (data not shown). NPs formulated with 10 mg/mL and 5 mg/mL of polymer had slightly larger particle size and decreased EE% compared to 20 mg/mL (Table 1), but both achieved sustained release of siRNA up to 13 days (Fig. 1). Release of siRNA from the 5 mg/mL formulation was higher than that of the 10 mg/mL formulation due to the decreased amount of polymer encapsulated.

Table 1. Particle size, zeta potential and encapsulation efficiency (EE%) of siRNA-loaded NPs, (N=3).

<table>
<thead>
<tr>
<th>C<sub>PLGA-PEG</sub> (mg/mL)</th>
<th>Size (nm)</th>
<th>Zeta Potential (mV)</th>
<th>EE%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>189.7±10.2</td>
<td>44.92±3.30</td>
<td>81.7±4.3</td>
</tr>
<tr>
<td>10</td>
<td>200.9±8.3</td>
<td>24.95±5.55</td>
<td>63.0±5.7</td>
</tr>
<tr>
<td>5</td>
<td>278.2±32.6</td>
<td>13.62±4.37</td>
<td>55.5±9.6</td>
</tr>
</tbody>
</table>

Table 2. Particle size, zeta potential and antibody conjugation efficiency (ACE%) of siRNA-loaded NPs, (N=3).

<table>
<thead>
<tr>
<th>ng Ab/µg NP</th>
<th>Size (nm)</th>
<th>Zeta Potential (mV)</th>
<th>ACE%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>189.7±10.2</td>
<td>44.92±3.30</td>
<td>-</td>
</tr>
<tr>
<td>0.08</td>
<td>227.9±6.6</td>
<td>33.30±1.15</td>
<td>23.8±3.5</td>
</tr>
<tr>
<td>0.8</td>
<td>231.5±7.8</td>
<td>35.09±2.22</td>
<td>37.7±4.2</td>
</tr>
<tr>
<td>8</td>
<td>225.0±4.9</td>
<td>31.78±2.35</td>
<td>76.4±2.7</td>
</tr>
</tbody>
</table>

There was a positive correlation between the amount of antibody added and the amount of antibody conjugated to the NPs (Table 2). Antibody-conjugated NP (NP-Ab) achieved higher intracellular uptake of siRNA in the T-cell line Sup-T1 compared to unconjugated NPs (Fig. 2).
Vaginal gel consisting of 1% HEC and loaded with NP-Ab showed a non-Newtonian shear-thinning behavior and the viscosity of the NP-Ab loaded gel was comparable to over-the-counter lubricant gel products (Fig. 3). Approximately 20% of loaded NPs were released from the gel over 24 h (Fig. 4).

Figure 1. In vitro release profile of siRNA from NPs formulated with PLGA-PEG (N/P ratio=6/1) at 37 °C in PBS (pH 7.4). (A) siRNA-PEI PLGA-PEG NP formulated with C_{PLGA-PEG} of 10 mg/mL; (B) siRNA-PEI PLGA-PEG NP formulated with C_{PLGA-PEG} of 5 mg/mL; Values represent the mean±S.D., N=4.

Figure 2. In vitro cell uptake study of siRNA-PEI PLGA-PEG NP-Ab in Sup-T1 cells. Images were taken 24 hr post-treatment. Green: Cy3-labeled siRNA, Blue: DAPI

Figure 3. Steady-state flow curves of 1% HEC placebo gel and 1% HEC gel loading siRNA-PEI NP-Ab (1 mg NPs/g gel) with a single measurement at 37 °C.

Figure 4. In vitro release profile of NPs (formulated with 10 mg/mL PLGA-PEG) from 1% HEC gel at 37 °C in PBS (pH 5.0). Values represent the mean±S.D., N=4.

CONCLUSION

Our research group has developed a novel intravaginal nano-based drug delivery system for the active delivery of siRNA to T cells. siRNA can be efficiently encapsulated into PLGA-PEG NPs with desirable particle size for intravaginal delivery and sustained drug release. NP-Ab can be efficiently taken up by T cells. NP-Ab can be formulated into a gel dosage form that is comparable to marketed vaginal gel products.

ACKNOWLEDGMENTS

This work was supported by a grant awarded to Dr. Emmanuel A. Ho from the Manitoba Health Research Council. Sidi Yang is also grateful for the financial support received from the Manitoba Health Research Council Graduate Studentship and the University of Manitoba. We are also grateful to Dr. Xiaochen Gu and Mr. Yufei Chen for their help on this work.

REFERENCES