Extrusion - Spheronization
Pharmaceutical Applications
There are many solid dosage forms......

Why pellets?
Two Ways to Make Drug Pellets

Drug Layering (DL) vs. Extrusion-Spheronization (ES)
Pellets by DL

Inert Spherical Core (non-pareils, MCC, etc)

Drug Layer

Control Release Polymer

Protective Coating
Pellets by Extrusion Spheronization

1. Drug
2. Mixing
3. Extrusion
4. Spheronization
Choosing DL vs. ES

Generally used for low API pellets
- Processing in Fluid Bed dryer/Coater
- Slow process due to multiple layers
- Single pot processing

Generally used for high API pellets
- API, excipients, MR polymers in core
- Fast process; high quantities
- Ideal for matrix pellets
- Multi-step process
Why Pellets?

Physical Advantages

- Improved flow properties
Why Pellets?

Physical Advantages

- Improved flow properties
- Narrow particle size distribution
Why Pellets?

Physical Advantages

• Improved flow properties
• Narrow particle size distribution
• Smooth, coatable surface
Physical Advantages

- Improved flow properties
- Narrow particle size distribution
- Smooth, coatable surface
- Low friability
Why Pellets?

Physical Advantages

• Improved flow properties
• Narrow particle size distribution
• Smooth, coatable surface
• Low friability

• Uniform packing characteristics
Why Pellets?

Therapeutic Advantages

- High drug loading (ES)

FAST FACTS

- API incorporated in the core
- ES Pellets with 90% API are possible
- High API = Less frequent drug administration
Why Pellets?

Therapeutic Advantages

- High drug loading (ES)
- **Modified drug release (ES)**

FAST FACTS

- Modified release excipients can be incorporated into the drug core
- May minimize (eliminate) the need for further coating
Why Pellets?

Therapeutic Advantages

- High drug loading (ES)
- Modified drug release (ES)

- **Disperse-freely in GI Tract**
 - Minimizing dose dumping
 - Avoiding high local concentration of drug

GI Tract TABLET vs
Why Pellets?

Therapeutic Advantages

- High drug loading (ES)
- Modified drug release (ES)
- Disperse-freely in GI Tract
 - Minimizing dose dumping
 - Avoiding high local concentration of drug

- Maximum drug absorption
 - Minimum peak plasma fluctuations

GI Tract
Why Pellets?

Therapeutic Advantages

• High drug loading (ES)
• Modified drug release (ES)
• Disperse-freely in GI Tract
 o Minimizing dose dumping
 o Avoiding high local concentration of drug
• Maximum drug absorption
 o Minimum peak plasma fluctuations

• Combination of incompatible API’s
Formulations for Extrusion Spheronization
Components of ES Formulations

Primary Components

- Active Ingredient(s)
- Extrusion/Spheronization Aid
- Water (or solvent)

Secondary Components

- Binders (natural and synthetic)
- Modified Release Excipients (CR, DR, ER, etc)
- Fillers/Diluents
- Disintegrants
Extrusion/Spheronization Aid

FAST FACTS
- 15-20% minimum
- Higher levels improve ES process
- MCC acts as a sponge; absorbs and evenly distributes moisture creating a homogenous wet mass

<table>
<thead>
<tr>
<th>Excipient</th>
<th>Trade Name/Grade</th>
<th>Particle Size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMC BioPolymer</td>
<td>Avicel™ PH-101</td>
<td>50</td>
</tr>
<tr>
<td>JRS Pharma</td>
<td>Vivapur® 101, Emcocel® 50M</td>
<td>65</td>
</tr>
<tr>
<td>Blanver</td>
<td>Microcel MC 101</td>
<td>50</td>
</tr>
</tbody>
</table>
Binders (Natural and Synthetic)

<table>
<thead>
<tr>
<th>Excipient</th>
<th>Trade Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxypropylcellulose (HPC)</td>
<td>Klucel®</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td>Hydroxypropylmethyl Cellulose (HPMC)</td>
<td>Methocel™</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td>Polyvinylpyrrolidone (PVP)</td>
<td>Kollidon®, Povidone®</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td>Pregelatinized Starch</td>
<td>Starch® 1500</td>
<td>Natural polymer</td>
</tr>
<tr>
<td>Ethylcellulose (EC)</td>
<td>Ethocel™</td>
<td>Synthetic polymer</td>
</tr>
</tbody>
</table>

FAST FACTS

- 2 – 5 % typically
- Stronger extrudates; less fines; higher overall process yield
Modified Release Excipients

<table>
<thead>
<tr>
<th>Excipient</th>
<th>Trade Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxypropylmethyl Cellulose (HPMC)</td>
<td>Methocel™ CR</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td>Ethylcellulose (EC)</td>
<td>Ethocel™</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td></td>
<td>Aqualon® T10</td>
<td></td>
</tr>
<tr>
<td>Acrylic Polymers</td>
<td>Eudragit RL</td>
<td>Synthetic polymers</td>
</tr>
<tr>
<td></td>
<td>Eugradit RS</td>
<td></td>
</tr>
<tr>
<td>Hydroxypropylcellulose (HPC)</td>
<td>Klucel® HXF</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td>Hydroxyethylcellulose (HEC)</td>
<td>Natrosol® HHX</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td></td>
<td>Natrosol® HX</td>
<td></td>
</tr>
</tbody>
</table>

FAST FACTS

- Integrated directly into wet granulation step
- Added as a solid or a solution (depends on excipient)
Fillers/Diluents

<table>
<thead>
<tr>
<th>Excipient</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose Monohydrate</td>
<td>Sugar</td>
</tr>
<tr>
<td>Maltodextrins</td>
<td>Saccharide polymers</td>
</tr>
<tr>
<td>Mannitol, Sorbitol, Xylitol</td>
<td>Compressible sugars</td>
</tr>
<tr>
<td>Dicalcium Phosphate Trihydrate</td>
<td>Salt</td>
</tr>
<tr>
<td>Pregelatenized Starch</td>
<td>Natural Polymer</td>
</tr>
</tbody>
</table>

FAST FACTS

- Bulking agents
- % in formulation depends on API and MCC levels
Superdisintegrants

FAST FACTS
- 1% or less
- May be needed to counteract effects of binder addition

<table>
<thead>
<tr>
<th>Excipient</th>
<th>Trade Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-linked Polyvinylpyrrolidone</td>
<td>Kollidon® CL, Crosspovidone®</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td>Sodium starch glycolate</td>
<td>Primojel®</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td></td>
<td>Explotab®</td>
<td></td>
</tr>
<tr>
<td>Sodium Croscarmellose</td>
<td>Primellose®</td>
<td>Synthetic polymer</td>
</tr>
<tr>
<td></td>
<td>AcDisol®</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vivasol®</td>
<td></td>
</tr>
</tbody>
</table>
Formulation Example 1

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Percentage</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diltiazem HCl</td>
<td>40%</td>
<td>API (high solubility)</td>
</tr>
<tr>
<td>MCC (50µ)</td>
<td>30%</td>
<td>ES Aid</td>
</tr>
<tr>
<td>L-HPC 20</td>
<td>30%</td>
<td>Filler</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>Final Product</td>
<td>1.0 mm pellets</td>
<td></td>
</tr>
</tbody>
</table>
Formulation Example 2

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Percentage</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpheniramine</td>
<td>50%</td>
<td>API (high solubility)</td>
</tr>
<tr>
<td>MCC (50µ)</td>
<td>40%</td>
<td>ES Aid</td>
</tr>
<tr>
<td>Pregelatinized Starch</td>
<td>3.8%</td>
<td>Binder</td>
</tr>
<tr>
<td>Ethyl Cellulose</td>
<td>6.2%</td>
<td>Modified Release</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Content</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>Final Product</td>
<td>1.2 mm MR pellets</td>
<td></td>
</tr>
</tbody>
</table>
Formulation Example 3

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Percentage</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>39%</td>
<td>API (low solubility)</td>
</tr>
<tr>
<td>MCC (50µ)</td>
<td>60%</td>
<td>ES Aid</td>
</tr>
<tr>
<td>Povidone K90</td>
<td>1%</td>
<td>Binder</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Final Product</td>
<td>1.0 mm pellets</td>
<td></td>
</tr>
</tbody>
</table>
The Extrusion Spheronization Process
Mixing

1. Mixing
2. Extrusion
3. Spheronization
4. Drying/Coating
Production Mixers

FAST FACTS

- Most often used in production
- Top or bottom driven

High Shear Granulators (HSG)
Mixing Variables

GOAL

- A wet, homogenous mass
- Soft wet mass, but still needs to hold its shape under low pressure
- Enough gliding properties to enable low pressure extrusion

Liquid Addition Rate

- **Minimize** addition time
- Longer rates = higher density

Mixing Speed/Intensity

- **Lower** chopper/impeller speeds
- Higher speeds = higher density

Massing Time

- **Minimize**; No need to fully granulate
- Longer massing time = higher density
Extrusion

1. Mixing
2. Extrusion
3. Spheronization
4. Drying/Coating
Terminology

Extrudates
- Particles produced by an extruder
- Mostly cylindrical in shape

Pellets
- Cylindrical particles or spheres
- Term is used interchangeably

Beads
- Spheres produced by a spheronizing device
- Inert cores (Nonpareils, or MCC)
- Other terms: beadlets, marumes, spheroids
Dome Extrusion

Dome Axial

Radial Basket
Twin Dome Extruder Schematic

FAST FACTS

- Twin screw
- Short residence time
- Plug Flow (1st in, 1st out)
- Consistent pressure profile across the die
- Adjustable extrusion gap
- High capacity
- Simple to operate
Twin Dome Video
Extrusion Variables

GOAL

To Produce Extrudates Suitable for Spheronization

- NOTE: Variables apply to Dome, Radial, and Basket extrusion

Moisture Content

- Higher moisture = Higher extrusion rate
- Higher moisture = Longer extrudates
- Higher moisture = Less work, pressure, temperature, power
- Excessive moisture = Secondary agglomeration (extruder & spheronizer)

Extrusion Gap

- Smaller gap = Less compaction
- Smaller gap = Little to no heat generation
- Smaller gap = Less build-up and hardening of material

Die Hole Diameter

- Larger Diameter = Higher extrusion rate
- Larger Diameter = Softer extrudates (less compaction)

Die Thickness

- Thicker Die = Harder extrudates (more compaction)
Spheronization

1. Mixing
2. Extrusion
3. Spheronization
4. Drying/Coating
Spheronization Mechanisms

Mechanism 1

Mechanism 2
Spheronizer in Operation Video
Mechanism of Spheronization

3 Types of Collisions

1. Particles with Plate
2. Particles with Wall
3. Inter-particle

> Tumbling action
> Twisting Rope

- Tumbling action
- Twisting Rope
Friction Plate Designs

2 mm CH plate

3 mm CH plate

5 mm CH plate

Radial plate
Spheronization Variables

GOAL

- To produce the most spherical product (aspect ratio closest to 1.0)
- Narrow Particle Size Distribution (PSD)
- Product densification

Friction Plate Speed
- Affects product sphericity (shape)
- Affects product density

Processing Time
- Affects product sphericity
- Affects PSD

Moisture Content
- Proper level required for strength, product pliability
- Excessive level can cause larger spheres; secondary agglomeration
- Affects sphericity (shape)
- Affects product porosity

Friction Plate Configuration
- Impart more energy, stronger collisions
- Can produce more fines
Drying/Coating

1. Mixing
2. Extrusion
3. Spheronization
4. Drying/Coating
Drying/Coating

Fluid Bed Dryers/Coaters

Bottom Spray for coating
Temperature Rise in Process

- **Mixing**: 2° - 8°F
- **Extrusion**: 2° - 15°F
- **Spheronization**: 2° - 6°F
- **Drying/Coating**: MINIMAL
Continuous Drug Pelleting Systems
LCI Continuous Drug Pelleting System
(Shown with Radial Extruder)
Laboratory Equipment
MG-55 Multi Granulator

FAST FACTS

• 15-20 kg/hr extrusion rate

• Easily converts into a dome, radial or axial extruder
QJ-230T Marumerizer

FAST FACTS

• 230 mm diameter friction plate
• 1 liter nominal batch size
• Manual discharge
• Laboratory
FAST FACTS

- 5 liters vessel
- 25 g – 5 kg batches
- 2 kW electric heater
- 11-78 cfm air blower
- Temperature/Humidity probe
- Maximum Temperature: 200°C
- Programmable
Conclusion
Final Dosage Examples

Capsules

- CR/SR coated pellets
- DR coated pellets (e.g. enteric)
- MR coated pellets (e.g. pulsatile)
- Matrix pellets (coated or uncoated)
- Multi-Particulates

Tablets

- Disintegrating tables (made of coated pellets)

Sachets

- Sprinkle Drugs (taste masked pellets for pediatric/geriatric drugs)
Commonly Pelleted Drugs

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Omeprazole</td>
<td>Ibuprofen</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Ketoprofen</td>
<td>Theophylline</td>
</tr>
<tr>
<td>Propranolol HCl</td>
<td>Acetaminophen</td>
<td>Piroxicam</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Diltiazem HCl</td>
<td>Hydrochlorothiazide</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Venlafaxine HCl</td>
<td>Diphenhydramine</td>
</tr>
</tbody>
</table>
Recommended Publications

1. Influence of material characteristics on the extrusion and spheroidization behavior of wet mass. M. Gill, J. Huang, K. Chow: GSK, Patheon and University of Toronto.

Questions
LCI GRANULATION TEAM

CONTACT INFORMATION

Samer Habash
Granulation Manager

LCI Corporation
Phone: 704 398 7874
Mobile: 704 907 0669
shabash@lcicorp.com

LinkedIn - Samer Habash

www.lcicorp.com

Lauren (Wood) Petraglia
Technical Sales Specialist

LCI Corporation
Phone: 704 398 7890
Mobile: 704 241 1590
lpetraglia@lcicorp.com

LinkedIn - Lauren Petraglia

www.youtube.com/lcicorp