Preparation, *In Vitro* Characterization and *In Vivo* Evaluation of Polymeric Microspheres as a Sustained Release System for Anti-TNF

F. Cheng¹, J. Lu¹, Y. Ogawa², N. Tahara², T. Yamashita², K. Huang¹, C. Liu¹, and S. KOJIMA²

¹ Industrial Technology Research Institute, Hsinchu, 30011, Taiwan;
² JGC Corporation, Nishi-ku, Yokohama, 220-6001, Japan

Itria00563@itri.org.tw

Purpose: This study aims at the development and preliminary evaluation of polymeric microspheres encapsulating tumor necrosis factor (TNF) inhibitor agent (TuNEX, biosimilar etanercept) as extended release treatment for arthritis.

Methods: TuNEX complex was fabricated by using ionic interaction between TuNEX and zinc chloride as drug precursor. TuNEX-poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared via solid/oil/water double emulsion and characterized for drug loading, particle size, surface morphology and *in vitro* release. Pharmacokinetics were assessed in rats after subcutaneous administration. Therapeutic effects were evaluated in collagen induced arthritis model (CIA) in mice.

Results: The TuNEX-PLGA MS were successfully developed with drug content of 11.6% w/w and mean particle size of 45.55 μm. The *in vitro* release from PLGA MS formulation followed an initial burst of 35% at 1st day and a continuous release phase up to 35 days. Data from PK study confirmed the prolonged TuNEX exposure for animals treated with TuNEX loaded microspheres and the formulation possessed prolonged *in vivo* pharmacokinetics parameters. We verified the therapeutic effects of TuNEX-PLGA microspheres in the CIA PD model and demonstrated that at same cumulative dose, 5 mg/kg, repeated doses (N=5) showed superior therapeutic efficacy than 25 mg/kg, single dose.

Conclusions: A well-controlled release of TuNEX, a water soluble TNF inhibitor, with small initial burst was achieved by utilizing formation of its metal complex forms as a result of possible interaction with PLGA and arginine. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future.

References: