
Engineering nanoparticle systems to target 
lymphatics and their underlying cellular 

mechanisms

Immunoengineering GRC
July 11, 2024

Dr. Katharina Maisel

Mucosal Associated Immune System 
Engineering and Lymphatics Lab



http://anatomyandphysiologyi.com/wp-content/uploads/2014/01/Lymphatic-vessels.jpg
http://www.natureswarehouse.net/assets/images/Blog/Lymph%20system.jpg 2

Lymphatics are crucial for tissue homeostasis

• Maintain fluid balance
• Transport materials from peripheral 

tissue to the lymph nodes
• Cellular trafficking to the lymph nodes
• Modulate immunity



Lymphatics transport nanomaterials to the lymph nodes
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Lymph node 

Maisel et al. Adv Drug Del Rev 2017.
BioRender

Lymph node delivery improves immunotherapeutic efficacy
• Vaccines
• Allergen immunotherapy
• Cancer immunotherapy
• Tolerogenic treatments for autoimmunity



Lymphatics transport nanomaterials to the lymph nodes
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Lymph node 

Maisel et al. Adv Drug Del Rev 2017.
BioRender

Lymph node delivery improves immunotherapeutic efficacy
• Vaccines
• Allergen immunotherapy
• Cancer immunotherapy
• Tolerogenic treatments for autoimmunity

What material properties are required to maximize nanoparticle 
transport into lymphatics?



McCright et al. Acta Biomaterialia 2022.
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Nanoparticles can be formulated with PEG with 
positive, negative, or neutral charge
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Nanoparticles 20-250 nm are effectively transported 
to the lymph nodes by lymphatics



Neutral surface charge maximizes ~100 nm nanoparticle transport across lymphatics 

Nanoparticle charge modulates their transport by lymphatics

M-PEG
C-PEG

N-PEG PS
0

2

4

6

24 Hour-Transport

Pe
rc

en
t T

ra
ns

po
rt

ed
  (

%
)

0 10 20 30
0

1

2

3

4

5

Time (Hours)

Tr
an

sp
or

t E
ffi

ci
en

cy
 (%

)

N-PEG
C-PEG
M-PEG

PS

*

*

*

*

6

40 µm

Nanoparticles

LECs
*

unpublished



7

PEGylation enhances nanoparticle accumulation in the lymph nodes
100 nm 40 nm

McCright et al. Acta Biomaterialia 2022.
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PEGylation enhances nanoparticle accumulation in the lymph nodes
100 nm 40 nm

McCright et al. Acta Biomaterialia 2022.
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Cellular transport mechanisms

9BioRender

Dynasore Amiloride

Adrenomedullin

Rennick et al, Nat Nanotech 2021



Both paracellular and transcellular mechanisms govern transport 
of densely PEGylated nanoparticles across lymphatics

Amiloride: Macropinocytosis inhibitor 
Adrenomedullin: paracellular transport inhibitors
Dynasore: Dynamin inhibitor

10McCright et al. Acta Biomaterialia 2022.
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Both paracellular and transcellular mechanisms govern transport 
of densely PEGylated nanoparticles across lymphatics

Amiloride: Macropinocytosis inhibitor 
Adrenomedullin: paracellular transport inhibitors
Dynasore: Dynamin inhibitor
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Both paracellular and transcellular mechanisms govern transport 
of densely PEGylated nanoparticles across lymphatics

12McCright et al. Molecular Pharmaceutics 2024.

𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

= − 𝑘𝑘1 + 𝑘𝑘3 𝐶𝐶1 + 𝑘𝑘2𝐶𝐶2
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

= − 𝑘𝑘2 + 𝑘𝑘4 𝐶𝐶2 + 𝑘𝑘1𝐶𝐶1
𝜕𝜕𝐶𝐶3
𝜕𝜕𝜕𝜕

= 𝑘𝑘3𝐶𝐶1 + 𝑘𝑘4𝐶𝐶2

Jenny Yarmovsky



Both paracellular and transcellular mechanisms govern transport 
of densely PEGylated nanoparticles across lymphatics
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𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

= − 𝑘𝑘1 + 𝑘𝑘3 𝐶𝐶1 + 𝑘𝑘2𝐶𝐶2
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕
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𝜕𝜕𝐶𝐶3
𝜕𝜕𝜕𝜕

= 𝑘𝑘3𝐶𝐶1 + 𝑘𝑘4𝐶𝐶2

Rate 
Constants 

(µg mL-1 hr-1) 

100 nm 
PSPEGRf/D=4.9

100 nm 
PSPEGRf/D=1.3

40 nm 
PSPEGRf/D=4.7

40 nm 
PSPEGRf/D=0.8

k1 1.9 1.5 1.5 1.2
k2 3.9 3.5 4.0 3.2
k3 0.013 0.012 0.014 0.011
k4 0.13 0.074 0.26 0.21

Jenny Yarmovsky



How do the particles get out?
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Nanoparticle surface chemistry does not affect uptake by LECs
DAPI PSPEGRf/D = 4.9 VE-Cadherin
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Exocytosis!
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(a) Diffusion
(b) Rapid recycling pathway
(c) Lysosomal pathway
(d) ER/Golgi apparatus pathway

Liu, J et al. Nanomaterials 2023, 13, 2215.
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Lysosomal exocytosis?
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DAPI Clathrin

PSPEGhi Overlay

30 µm

Aisha Abdulkarimu
unpublished



Lysosomal exocytosis?
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What’s causing the differences we 
see in uptake mechanisms?
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PEG density modulates the protein corona on 
nanoparticles

20F. Poncin-Epaillard, T. Vrlinic, et al. J Funct Biomater (2012).
L Digiacomo, D. Pozzi et al. WIREs Nanomed Nanobiotechnol. (2020).
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Lymphatic exudate has a different 
composition than plasma

21
Broggi et al. J Exp Med. 2019.



Protein corona from lymphatic exudate 
affects nanoparticle uptake by LECs
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Summary
• Densely PEGylated nanoparticles are most 

efficiently transported across LECs for 
nanoparticles 40 – 150 nm

• PEG density modulates nanoparticle transport 
mechanisms used by LECs

• Transcellular pathways significantly contribute 
to nanoparticle transport across LECs

• Exocytosis might be driving differences in 
nanoparticle transport across LECs
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