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MISSION

To improve human health and quality of life
by transforming the way new medicines
and materials are discovered through
advanced computational methods

@ Schrodinger CRS 2024 2



Our unique commitment to scientific innovation, software
development, and support

30+ years of
innovation in
molecular modeling
scientific research
and product
development

(@ Schrédinger

Over 800 employees
worldwide;
>40% Ph.D.

More than 50% of
the company
dedicated to
research and
development
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Large scientific
support & education
teams offer expertise
and support in
knowledge-transfer

Quarterly software
releases with
performance and
feature
improvements

CRS 2024



>800 employees spanning multiple sites across the globe
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Value of
Modeling
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Accelerate your design cycle

Next generation New design
material idea

Performance
assessment

DESIGN
CYCLE

Machine

Synthesis Leamning

Property prediction
& understanding

@) Schrédinger

Generation
of chemical
library

Physics
based
simulation

. Schrodinger digital chemistry

. Traditional experimental chemistry

CRS 2024
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Increased understanding

Traditional R&D Incorporating Computation

Trial-and-error approach to test Simulation reveals molecular-level
inputs and observe outputs resolution, linking structure to function

@ Schrodinger CRS 2024



Software
Platform
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Digital chemistry strategy built on three pillars
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Simulate: access all methods in a single platform

Size

Electronic
Molecular DFT
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Time

Amplified by

Machine
Learning
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Enumeration /
Library generation
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Modern, integrated, user-friendly GUI

@ Schrodinger

MS Maestro

Maestro Materials Science - 2021-1_sandbox.prj

ivent | Ecpant~ o S & A =.
<=L Provious | | Define. bR e e e e | om s
Minimize Selected A Measure
x e Workspace Navigator Title: dsb_LiPF6_EC_amorphous Title: TMA_on_Si-001-surface 2x2 P1 Title: Pt_2-tzp ]
PDB ID: d8v19556
TRY Qg
Row In Title -
1y diners (1) s L) e
1 @ Lrt2-tzp o % o .
& First Unit Cel.. 0 P Sretds 2 | 7
2 @ % s | /' J
3 g ‘ LN »
4 | | |
5 global / ,/' Y
1 ¥ nanostructure_.. Cc: 55.597. |
® ' nanotube-20x(6.. /\-""L~< lc: 19.908 %\
P z-matrix_gold_.. v /’ \
» periodic_dft_1.. - !
> polyner_builde.. | P
Y surfaces_inter.. ‘ ] ]
17 |- si-g01-surface | ) E/‘ >
18 L si-p01-surface.. '
» IRexamples (1) 595y
» enun_adsorbate... i
1 Y enum_adsorbate..
25 @ | TMA_on_Si-001-..
e Tite: EC Title: nanotube-20x(6,6) Title: rubrene_crystal
26 L TMA_on_Si-001-.. PDB ID: VESTA_phase_1
W DSB: dsb_LiPF6..
27 L dsb_LiPF6_EC_a-
W MD: dsb_LiPF6,
28 L dsb_LiPF6_EC.
W MD: dsb_LiPF6_.. 4 l ®
29 L dsb_LiPF6_EC.. j [
W PHOLEDs_from_p.. v,
EJIC (5) ‘n{
30 fac_Irppy3 d
£l | |- fac_trF3ppy3
32 | - fac_1rFappy3
33 | } mer_IrF3ppy3
Entries: ected, 6 2 atoms 16841 N 6 ] Muitiple (3) e @
2 16841 of 16841 IN 1710 1709

CRS 2024

11



Modeling and
Simulation for
Pharmaceutical
Formulation &
Delivery

@) Schrédinger
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Capabilities for drug characterization and formulation

Characterization

Catalysis, Reactivity, Degradation

Crystal Structure Prediction

Formulation and Delivery

(\(Q Schrodinger

Application Capabilities

pKa, powder X-ray diffraction (XRPD), crystal morphology, density of crystalline or amorphous
phases

QM multistage workflow, bond dissociation energy, nanoreactor (APl degradation), AutoTS
(transition state searching), reaction channel enumeration, Auto Reaction Workflow (catalyst
design), conformational search

Spectroscopy VCD, solution-state NMR, solid-state NMR, IR, UV-Vis

Crystal structure prediction

Creating machine learning models for formulations, system builders (mixtures, polymers,
surfactants, lipids, etc.), aqueous and solvent solubility of amorphous/crystalline API, API
aggregation, glass transition temperature, mechanical properties, wettability (contact angle),
separation during solvent removal (evaporation), APl encapsulation in cyclodextrin, etc.,
excipient selection and ASD formulation, API solubility and LogP in excipient, solubility
parameters, APl — excipient mixing enthalpy, ASD separation and dissolution,
protein/biologics excipients selection, hygroscopicity (moisture sorption) in amorphous solid
dispersions, APIs, tablet coatings, solution viscosity, protein/polymer interactions, lipid
nanoparticles, liposomes

CRS 2024 13



Machine Learning for
Formulations

((Q Schrodinger CRS 2024 14



Featurization: diverse materials systems

Small molecules Polymers Periodic inorganic Formulations and
Physiochemical, Taking into account solids mixtures
topographical descriptors connections between Element Composition
Binary fingerprints (RDKit, repeat units Lattice structure Chemistry of the
Canvas) RDKit fingerprints + Oxidation state components
Graph-based convolution customized descriptors Intercalation descriptors Experimental/processing
neural networks 3D SOAP (with PCA) conditions

Physics-based descriptors:

¢ Quantum mechanics
* Auto Reaction Workflow

Physics-based descriptors: Physics-based descriptors:

* Molecular dynamics * Periodic quantum
* Quantum mechanics mechanics

Physics-based descriptors:
* Molecular dynamics

K(& Schrodinger CRS 2024 15



Automated machine learning: DeepAutoQSAR

1
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PARAMETERIZATION

Key1 mmp 1
Key2 mmp il
Key3 mmp 1

(\(& Schrodinger
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TRAINING [l TESTING % HOoLDOUT
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FOLD SCORES 1-5
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2 3

o] wp

MOLECULE

~

A

SMILES

CC(C)Cn1c(=0)

CCCC[C@H]

0=51(=0)CC|[

Architecture 1

Architecture 2

Architecture 3

MEAN

0.42

0.76

STDEV

0.11

0.09

0.51

Data splits, featurization

Models Sampled

Dense Neural Network
Random Forest Regressor
XGBoost

TorchGraphConv
GCN
GraphSAGE
. . GIN

Model architecture, descriptor and TopK

hyperparameter c':or.nblnajuons SAGPool

explorgd and .op.tlml.zed via EdgePool

Bayesian Optimization GlobalAttention
Set2Set
SortPool

Consensus Model
» Prediction = an average of the predictions for 5 best models

Uncertainty = SD across the 5 predictions

CRS 2024
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Machine learning for aqueous solubility

8,773 molecules spanning 10 elements
Trained on a GPU for 12 hours using DeepChem/AutoQSAR
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(@ SChrOdlnger Dataset Reference: Sorkun et al. AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for CRS 2024 17

a diverse set of compounds. Scientific data 6.1, 1-8 (2019)



Formulation machine learning

Data loading/visualization Model training Model evaluation/prediction

nnnnnnnnnnnnnnnnnnnnnnnn

Build, validate, and apply machine learning models based on chemistry and composition to predict any
formulation property (e.g. density, viscosity)

Allows input of external conditions, such as temperature, pressure, and so on

Fully automated machine learning approach with automatic hyperparameter tuning

CRS 2024 18
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Drug solubility: Bao et al. dataset

Dataset summary
28,703 total examples: 128 drugs, 44 solvents

Example of solvents Example of drugs
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' Poa  OL 5l ®
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SN HaN"NH, @EN%NH

Dimethylformamide

OH
Ho. A

Propylene glycol Guanidine

hydrochloride Carbendazim
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CASE
STUDY

Distribution of solubility and temperature
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w
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1 1 T 1
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Solubility (mol/mol) Temperature (K)

Goal: Predict temperature-dependent solubility of drug in pure/binary solvents

((& Schrodinger
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Drug solubility: formulation machine learning

Parity plot
Out-of-sample
90:10 train:test split

1.2 1 ® Train
@ Test

1.0 A

0.8 1

0.6 1

0.4 A

0.2

0.0 1

Predicted Solubility (mol/mol)

—0.2 A

= 27166
R? = 0.99

rain RMSE = 0.01

Test RZ2 = 0.93

Test RMSE = 0.02

1 1 1 1
-0.25 0.00 0.25 050 0.75 1.00 1.25

Actual Solubility (mol/mol)

K(& Schrodinger

CASE
STUDY

4 B Test set prediction as a function of Test set prediction as a
H,N NH, composition for binary mixture function of temperature
o)
> =
I D Temperature (K) = 278.15 K = Solvent_1_mol_fraction = 0.06
g — B E 0.30 | === Exp.
1,3-phenylenediamine T 0.12 - =¥ Predicted 2 —J— Predicted
= (0]
\_ Y, K i % 0.25 1
& Goss / 2 0.20 /
- e / A
—OH = 0.06 - / = 015 1
i) Methanol 2 =
- 35 0.04 £ 0101
o 2 S
(_>3 O ; é 0.05
N = 0.02 .05 1
@ H H = 2
=} Qo
Water g 0.00 T T T T T:,) 0.00
0.0 0.2 0.4 0.6 0.8 1.0 1) : ' ' ;
Solvent 1 Mole frac. [Methanol/Water] 280 .|_2 % %00 310
N J emperature (K)

Formulation ML models used to create an accurate model for predicting solubility

Model achieves an average test set R? of ~0.93

Model enables tunability in both composition and temperature

CRS 2024 20



Small molecules formulation and
delivery

((& Schrodinger CRS 2024 21



Solubility parameters

Calculation of cohesive energy density allows for prediction of Hansen/Hildebrand solubility parameter ().
Smaller differences in & (<~7 MPa'?) indicate miscibility

S AS (MPa)"2 Miscible?
« Fast miscibility screening for AP / solvent (predicted) (experiment)’
combinations
Water : No (1.5 x 10° M)
« Screening of 100s-1000s of solvents enables . :
construction of a miscibility matrix Formamide : No (1.4 x 10™ M)
Ibuprofen
* APl input can be amorphous and/or crystalline Cyclohexane : Yes (0.15 M)
Ethyl Acetate . Yes (0.33 M)

ibuprofen formamide cyclohexane ethyl acetate
ﬁ)) Yo ] "Exp. solubility from: T. Kitak et al., Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate, CRS 2024 22
(ﬁj SChrOdlnger Molecules. 20, 21549 (2015)



FEP Solubility: amorphous API into water

Calculate the free energy to move molecule from the amorphous into the solvent via
constructing a thermodynamic cycle

Solvated (1 M) Aggregate of small molecules

AG

solvation

AG

sublimation

FEP

AG

solubility

AG =AG

solubility solvation

S = exp(-AG

+AG

sublimation

/RT)

solubility

(@ SChr0d|nger Mondal et al., A Free Energy Perturbation Approach to Estimate the Intrinsic Solubilities of Drug-like Small Molecules, CRS 2024
ChemRxiv (2019)



FEP Solubility: crystalline API into water

Dataset includes drug-like molecules from:

0.0
— DLS100 and Sol Challenge datasets
. L]
(53 data points) — 10} 4
= : 4
] ] <] . . ¥
— AbbVie proprietary compounds 5_2.0_ , . }
(17 datapoints) g ; 5% ¢
O - >
) '€ =30} : .
Molecular weight range: 250 — 445 g/mol & ' { . 1
% ¢ 't
2 -40F ,
£ v
® -6.0 [ * 7
£ -e0l” f | |
o 60 50 240 30 20 .0 0.0
Experimental Thermodynamic LogS [mol/L]
@ Schrodinger Hong, R.S., et al, Free Energy Perturbation Approach é%r Aégér;t(ezgzré/?talline Aqueous Solubility Predictions, J. Med. Chem., CRS 2024 24



FEP Solubility: API into solvent

Paracetamol Saccharin
Input: e
SMILES, 2D structure, .cif, etc., for APl and
solvents list :
Output: 0.8 12
solvent solubility/water solubility ratio or o6 1o
- g £
solute solubility = < 08
. . 5 04 S5 06
Timeline: 3 3
. @ @ 04
~2 days per API/solvent combination 02
0.2 II
4 4
S y?1.44x+0.11 y?1.23x+1.29
1 31|R“=0.74 Water 311R*=0.80
_2303RTZOQ (S_Q) = (AGsolvation,l - AGsolvation,Z) i‘ R MUE=0.67 %} —E " MUE=1.28 %@Water
o 1 o
N v J . J E A E ) %%
. © 1 © ]
Experimental AAG Computed AAG 2 . ﬂ s .
3 3
< <
- -1 - -1 %
S,: experimental aqueous solubility £ K
. , 2 —21 2 =21
AG .ion 2+ SOIVation free energy of solute in ethanol 8 S
-4 -4
-4 -2 0 2 4 -4 -2 0 2 4
Experimental AAG [kcal- mol™1] Experimental AAG [kcal- mol™!]

Dark and light-orange typically depict 1- and 2-kcal/mol confidence bounds for simulated AG values (see Mey et al. Best Practices for
Alchemical Free Energy Calculations LiveCoMS, DOI:10.33011/livecoms.2.1.18378). The bounds are expanded based on error
propagation for the difference in two values of AG. i.e. dark orange: v2/2 light orange: V2

K(& Schrodinger

Solubility (m)
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CRS 2024
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FEP Solubility: API into excipient

| [y=o798mxT.005%
Water R2=0.81976
04 |MUE=0.88071
..g..
. _ e @0 ©o
25% e oy J%
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@) Schrodinger CRS 2024
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Tackling Drug Solubility: AbbVie and
Schrodinger Collaborate to Advance
Accurate Prediction Methods

~
1

Predicting crystalline solubility at an
early stage not only enables the
identification of potential risks but

also aids chemists in prioritizing LINK TO BLOG

Synthesis and mO|eCU|ar deSign_ www.extrapolations.com/tackling-drug-
solubility-abbvie-and-schrodinger-

_ _ collaborate-to-advance-accurate-
— Richard Hong, AbbVie prediction-methods/

%

LINK TO ARTICLE

(@B} Schrédinger ‘ Qb b\/|e https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c01339 CRS 2024 57



http://www.extrapolations.com/tackling-drug-
http://www.extrapolations.com/tackling-drug-
http://www.extrapolations.com/tackling-drug-
http://www.extrapolations.com/tackling-drug-
https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c01339

B-cyclodextrin / ibuprofen inclusion complexes

All-atom system building

BCD, ibuprofen and water

“hedigha

4
.
73

buprofen

oo

full system

water

28
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B-cyclodextrin / ibuprofen inclusion complexes

All-atom molecular dynamics simulation of $CD, ibuprofen and water reveals clustering and the formation of

inclusion complexes

Equilibrated structure

Radial Distribution Function

—— [(res.pt "MO ")]:[(res.pt "M1 ")]

800

700 -

600 -

500 -
= 400 4
El

300 -

200 A

1004

(@ Schrodinger

Number of molecules

Waters hidden

Cluster Analysis

Number of Molecules vs Time

40

30 A

20 A

10 A

— 1st
— 2nd

Wi an

0 20

40 60 80 100
Time (ns)

Inclusion complex

Extract Clusters

CRS 2024
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From all-atom to particle representations

o{ \
[N/
[\

@ Schrodinger CRS 2024 30



Accessing larger and longer simulations with coarse-graining

K[& Schrodinger

j?

Q

CRS 2024
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Automated DPD procedure

((& Schrodinger CRS 2024 32



Automated DPD procedure

Potential for a soft particle

000000000000

e.g., Dissipative Particle Dynamics (DPD)

@) Schrodinger CRS 2024 33



Automated DPD procedure

Pair-distribution functions

o« Molecules -
« Compositions AtomIS.tIC /\.—-
o Build and AAMD simulation

settings

Compare

Pair-distribution functions

« Mapping scheme DPD
« Bead volumes _ at
« Fitand CG MD settings Simuilation

x Refine DPD parameters  ygm

@j Schrodinger CRS 2024 34



Optimize drug formulations with digital simulation

CHALLENGE - s SOLUTION

Pooes AbbVie and Schrédinger used
coarse-grained MD to understand
dissolution profiles of ASDs. Doing so
enabled evaluation of drug/polymer
combination dissolution rates, identification
of interactions responsible for delayed
release, and enabled rational design of new
excipients for drug formulations.

Developing efficient drug formulations
requires a clear understanding of
mechanism behind the rate and extent of

dissolution of amorphous solid
dispersions (ASDs). However, such
molecular-level understanding is difficult
to obtain through experiments alone.

Result: Identified the root cause of unusual release profiles and enabled

rational design of new polymers for desired drug release.

@ Schrodinger - obbvie CRS 2024 35



ASD dissolution: API release

Changing polymer in amorphous solid
dispersions (ASD) has major impact on

A

dissolution and release profile e A
\‘V/ &

Experiments show water permeates

copovidone (CPV) ASD quickly while water

Soluplus (SLP) ASD dissolves slowly

GOAL

Can we understand the polymer impact on
dissolution? If so, formulation scientists can
guide ASD selection and screening to best
candidates

“ Copovidone (CPV)

.. Soluplus (SLP)

AbbVie/Schrodinger collaboration involving: Mohammad Atif Faiz Afzal, Kristin Lehmkemper,
Ekaterina Sobich, Thomas F. Hughes, David J. Giesen, Teng Zhang, Caroline M. Krauter, Paul
Winget, Matthias Degenhardt, Samuel O. Kyeremateng, Andrea R. Browning, John C. Shelley

(Q SChrOdinger Image adapted from Fig 4 in Afzal et al. Molecular-Level Examination of Amorphous Solid Dispersion Dissolution, CRS 2024 36
Mol. Pharm., 18, 3999 (2021)



CASE

STUDY

ASD dissolution: dissolution of pure polymers at 37°C

Experimental observations: DPD simulation results

CPV S5 CPV SLP
0.006

CPV . 0.005
; 0.004

SLP * 0.003
. 0.002

0.001

Water permeates CPV very rapidly
CPV largely dissolved within 30-60 min

—51
——— )
=53
—H1

= =51+52+S3

0.006
0.005
0.004
0.003
0.002 !
0.001

SLP

SLP dissolves more slowly and with a
noticeable hydration front

Some SLP remains undissolved at 60 min

Site Density (A-3)

0.006
0.005
0.004
0.003
0.002
0.001

SLP interfacial structures slow down

water penetration 900 0 920(/&;900 0 900

' Copovidone (CPV)
‘ Soluplus (SLP)

° Exptl results: Pudlas et al. Eur. J. Pharm. Sci., (2015)
@ Schrodmger Simulation: Afzal et al. Mol. Pharm.,18, 3999 (2021) CRS 2024 37



ASD dissolution: protonated acid API at low pH

Experimental observations:

CPV

Complete water penetration after
20 minutes

Potential, mostly transient, precipitation of
drug after 5 minutes

Drug and polymer still detectable at 30
minutes
SLP

Essentially no water ingress
Essentially no dissolution

Drug and polymer signals largely
unchanged over 30 minutes

K(& Schrodinger

DPD simulation results

Cycles
0.005
0.004
0.003
0.002

0.001

CPV
0

() SLP

3

< 0.006

= 0.005
£'0.004

e %o.oos
. ©0.002

© Ooo01

(0]

600

(12)

5=
.. U 0.006
R 0.005
0.004
0.003
0.002
0.001

1200
(24)

Exptl results: Pudlas et al. Eur. J. Pharm. Sci., (2015)
Simulation: Afzal et al. Mol. Pharm.,18, 3999 (2021)

CPV

SLP

o A

—(C1 (CP)
32 (VA)
—H1 (water)

— (CIlHHC?
——[1+12+12C (IBP)

——351 (PEG)
——52 (VA)
——S3(VC)
—H1 (water)

- =S51+52+S3
——|1+12+12C (IBP)

900 -900 0
Z(A)

Copovidone (CPV)

900

Soluplus (SLP)

CRS 2024
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ASD dissolution: hydrogen bonding in the solid state

100

Transmittance

40

30

J

20 1639

IR spectra

—— DIy CEV
Wet CPV
----- Dry IBP/CPV ASD )
----- Wet IBP/CPV ASD 100 4

o 3 ~ =3 ©
=3 o =) =3 =3
1 1 1 1 1

Transmittance

&~
=3
1

\/

1 Vv
30, 1608

——Dry SLP
—— Wet SLP
----- Dry IBP/SLP ASD
----- Wet IBP/SLP ASD

)
~/
1622
1085

1262 1239
1234

L IOV I SO | | ) A % T L T i T L T 4
1750 1700 1650 1600 1550 1350 1300 1250 1200 1150
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e
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((& Schrodinger

T
1800 1750 1700 1650 1600

R L PR I B i e e |
1350 1300 1250 1200 1150 1100 1050

Wavenumber (cm-1)

Afzal et al. Molecular-Level Examination of Amorphous Solid Dispersion Dissolution, Mol. Pharm.,18, 3999 (2021)

Hydrogen bonding

CPV
(C=0, C1)

SLP

(C=0, S3)
Acid-vinylpyrrolidone <  Acid-caprolactam

Water-vinylpyrrolidone >  Water-caprolactam

DPD simulations in solution show:
@ + Greater number of Acid-S3 vs

Acid-C1 interactions

» Greater hydration of C1 vs S3

Structuring at in SLP may also be
a factor

CRS 2024 39



Self assembly of pure DPPC into a liposome

Self assembly from a random distribution of DPPC in water

Simulation time

[ lipid head groups
lipid tails

ter not sh
System contains 546,832 coarse-grained water not shown

particles with 10,496 DPPC molecules
(representing >5,000,000 atoms; 400 A
simulation box size)

self-assembled
liposome

((Q Schrodinger CRS 2024 40
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Biologics formulation
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RNA Technology

e LNP protects cargo from
cleavage/biochemical mutation

e After transfection, pH shift within
the endosome will cause
protonation of more ionizable
lipids

e« More charged lipids associate
with negative lipids from
endosome and degrade
endosome

e mMRNA cargo must escape
endosome and begin translation

(@ Schrodinger

Endocytosis Cytoplasr
oot
IVT mRNA-nanosystem
complex
Endosome
Receptor
Endosome
escape
e 3
Translation Nucleus
Polypeptide A
i R
o pr.
Ribosome
Image from Almushedi et al., Pharmaceutics, 13, 206 (2021) CRS 2024 42



Apparent pK_

« Defined shift from solution single-molecule pK_ values
« molar ratio of components within bilayer influences pK_
o It represents the pH where ionized = neutral species

K(& Schrodinger

All ionizable lipids in use have apparent pK_

values within one unit

A. DIin-MC3-DMA: \AA~~CCC T 0

pKa: 6.44

B. SM-102:
pKa: 6.75

C. Alc-0315:
pKa: 6.09

0
(vvﬂ: ~C
g NP SN NN

HO/\/N

CRS 2024 ‘ 43



Apparent pKa values of ionizable lipids in LNPs

COMIRNATY® Lipid A Onpattro® SpikeVax®

ALC-0315 48 Lipid A 471 Din-MC3-DMA 49 SM-102 49
CHOL 42 CHOL 43.1 CHOL 40.8 CHOL 40.8
DSPC 10 DSPC 9.8 DSPC 10.2 DSPC 10.2

HO\/\N/\/\/\[ro\/\/\/\/\/\
0

L WS rresme o

ALC-0315 Lipid A DLin-MC3-DMA SM-102

a

Apparent pK

7.5
7.0
6.5
6.0
5.5
5.0
4.5

COMIRNATY® Lipid A

@ Experimental

Onpattro®

Calculated

@ * Apparent pK_ values are 1.5 to 3.5 units lower than intrinsic pK_ values

SpikeVax®

» Calculated apparent pK, values are highly correlated with experimental values

@ Schrodinger Preprint available: Hamilton et al., Calculating Apparent pKa Values of lonizable Lipids in Lipid Nanoparticles, ChemRXxiv (2024)
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CASE
STUDY

Modelling the assembly of RNA-loaded nanoparticles

Model System for Pfizer-BioNTech COVID-19 Vaccine

&, g / ALC-0159
U . c @ A X "
PEG-Lipid ~ (2
X

@  Cationic ionizable lipid /M

. CG mRNA T
Helper lipid = —
PAAANAAAANAAANANAN \/ &) T % AANANA
, Aoy
$ Cholesteral
Ml Therapeutic nucleic acid ALC-0315 CG ALC-0315 ALC-0315 CG ALC-0315 CG DSPC
(neutral)

Pox, (neutral) 25, (charged) (charged)

Ty e

ethanol 4?‘ CG ethanol

Kularatne et al., Pharmaceutics,15, 897 (2022)

cholesterol . , CG cholesterol

8
SR
= ,‘r‘\)‘} O

water 7 -~

All atom system (~72,000 atoms, simulated for 1.5 ys) mapped into CG
1 particle = 10 heavy atoms
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RNA-loaded LNP self-assembly (low pH)

. lonizable lipid is mostly (90%) protonated

« LNP self-assembles from homogeneous mixture in ~3 ys

« LNP has the correct characteristics:
o  Roughly 35 nm in diameter
o  mMRNA encapsulated in aqueous channels lined with ionizable lipid
o  PEGylated lipid localized on the LNP surface

Vs

t=500 ns t=1500 ns t =3000 ns

(@ Schrodinger Preprint available: Grzetic et al., Coarse-Grained Simulation of MRNA-Loaded Lipid Nanoparticle CRS 2024 46
Self-Assembly, ChemRxiv (2024)



CASE
STUDY

RNA-loaded LNP self-assembly - effect of pH

Bleb formation after
Full LNP Cross section shift to higher pH

50 nm

[l 'onizable lipids I PEG lipids
B mRNA Cholesterol, DSPC

Self assembly from a random aqueous solution in about 3 us

K@ Schrodinger Preprint available: Grzetic et al., Coarse-Grained Simulation of MRNA-Loaded Lipid Nanoparticle CRS 2024 47
Self-Assembly, ChemRXxiv (2024)



RNA-loaded LNP self-assembly - effect of pH

physiological pH has been observed!

Circulation occurs at physiological pH (ionizable lipid largely deprotonates). Bleb formation at

300 mM Na-citrate

) Po
P s gl e S s
o= :°'§ Neutralization of ionizable :“°°°°°°°°°o ::%
“ $ Fusion driven b lipid induces phase oe‘?(';,; S %
°‘ooos° s y o o o & o\ 5-“9 [ .rs
K 300 mM Na-citrate separation into oil droplet At &
A at pH4 while mRNA migrates to bleb  £gextmac s, o
o°°?g 7 :‘f‘o oi R of-m 8';:&"%%b%§’§~8u\;’v
£rvs S8 3 PR AT
L2 o S = o ) & o iyeiesy
°o';6gr 3 5:,’%0 f_°:° °o°\:’ {wfp R ‘Q~"a°‘\a°
o 7900 %)
) AT bt
Larger structured LNP y -
9 LNP with bleb containing
mRNA

Small positively charged vesicles
and structured LNP containing containing mMRNA with
mRNA empty bilayer blebs
Protonated )R
ionizable lipid ionizable lipid

PEGylated lipid gHeIper lipid % Cholesterol ﬂ

Neutral @ mRNA

Cheng et al., Adv. Mater., 3, 2303370 (2023)

K(& Schrodinger

Brader et al., Biophysical Journal 120, 2766 (2021)
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Aggregation prediction: AggScore/Surface patch analyzer

Aggregation is a complex and not well understood process
— lrreversible self-association

Hydrophobic and electrostatic surface properties may all contribute to aggregation

We can project the contribution of hydrophobicity and electrostatics to the protein surface

I Positive patch
B Negative patch

B Hydrophobic patch

((& Schrodinger
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Exploratory study: aggregation of recombinant human
growth hormone (hGH) induced by phenolic compounds

Maa et al. International Journal of Pharmceutics 1996, 140:155-168
The authors looked at insoluble and soluble aggregation of a number of phenolic compounds

ldea: Use MXMD and AggScore to estimate the aggregation propensity induced by the excipients

& o o | o

2-Cholophenol Phenol Benzyl Alcohol Catechol Cyclohexanol

Series of compounds are quite similar

((Q Schrodinger CRS 2024 50




Experimental aggregation data

0_5 -T LI BRJ l LI fl L l LN DL I ] LR L I J l LI L I LEBLIR L ]ﬁ'l‘l_l.‘ : % Soluble
i Compound Size (nm)
' ] aggregate
0.4 [ _]
2 : 2-Chlorophenol 32 40
2 0.3 G
d_) -
= B - ] Catechol 15 17.6
5 clouqy -t
B 0.2
o slightly cloudy i Phenol 7 72
0.1 : very opalescent ]
opalesoent Benzyl alcohol 5 2.8
Shghtly opalescent
0
2-Cl-phenol m-cresol  catechol  phenol resorcinol  Bz0H CxOH  No additive C_hexanOI 5 22
Additive
None/Water ) 1.5

The solution is filtered and soluble aggregates were measured by
quasi-elastic light scattering (size) and SEC(% aggregate)

Conclusion: 2-Chlorophenol > Catechol > Phenol > Benzyl alcohol ~ c-Hexanol > Water

@) Schrodinger CRS 2024 51



Cosolvent tends to bind at hydrophobic hotspots

I Positive patch
B Negative patch
B Hydrophobic patch

2-Chlorophenol

((Q Schrodinger CRS 2024 52



Excipients induce exposure of hydrophobic pockets

I Positive patch
B Negative patch
I Hydrophobic patch

2-Chlorophenol
(highest AggScore frame)

K(& Schrodinger CRS 2024 53



Hydrophobic interactions with the excipients

% soluble
Compound
6500 aggregate
_§ 6009 Gt 2-Cl-phenol 40
0 5500 = =
« | | - Catechol 17.6
© 5000 ——
E s - S "
- Phenol 7.2
(]
o
2 4000 Bz-alcohol 2.8
9 >
S 3500 E m—
= c-hexanol 2.2
3000
- 4 A None 1.5
c-Hexanol Bz-alcohol Phenol Catechol 2-Cl-phenol X ray NA
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Preferential Interaction Coefficient

Many biotherapeutics reach clinical development whilst carrying aggregation liabilities
— At this stage the therapeutic protein is sequence-locked and cannot be modified

Formulation approaches often aim to negate aggregation by masking residues with a higher
aggregation propensity

— Pairing the correct excipient(s) with the right protein is challenging

— Molecular simulations can be used to observe protein-excipient interactions

Preferential interaction co-efficient (PIC) can be used to identify which excipients interact with

certain residues better than others to impact aggregation
— Does a particular excipient interact with a particular residue preferentially over water?

| 1
| ’
p h a r m a c B UIl GS @ Cite This: Mol. Pharmaceutics XXXX, XXX, XXX=XXX pubs.acs.org/molecularpharmaceutics

n " — nay(r)
3 3
Di(r) = ( ny(r) — nl(r)[ — ]
n - "1(7) Molecular Computations of Preferential Interaction Coefficients of
IgG1 Monoclonal Antibodies with Sorbitol, Sucrose, and Trehalose

and the Impact of These Excipients on Aggregation and Viscosity
Theresa CIoutier,Jr Chaitanya Sudrik,+ Neil Mody,:t Hasige A. Sathish,fF and Bernhardt L. Trout® "

CRS 2024 55
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Preferential Interaction Coefficient: workflow

Determine aggregation prone protein residues using AggScore
Run molecular simulations of protein in presence of excipient(s) of interest

Calculate PIC of aggregation prone residues to determine which excipient pairs best with which
aggregation prone residue

@) Schrodinger CRS 2024 56



Salt effect on antibody viscosity

Viscosity: Effect of 200 mM NaCl
100 7

90 —@&— Experiment /: /,
--@--Calculated & !
80 b 4 X
—e— with 200 mM NaCl Experiment ' ]
/
70 --o--with 200 mM NaCl Calculated ," /‘

Viscosity (cP)

0 20 40 60 80 100 120 140 160 180 200
Mab1 Concentration (mg/ml)

CRS 2024 57
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Salt effect on antibody viscosity

Viscosity: Effect of 200 mM NacCl, Scaled to match at 20 cP

100 7
—e— Experiment /
90 "
--@--Calculated ’
80 /
—e— with 200 mM NaCl Experiment /’
/
70 --e --with 200 mM NaCl Calculated /!

Viscosity (cP)

0 20 40 60 80 100 120 140 160 180 200
Mab1 Concentration (mg/ml)
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Extraction of steric mass action parameters

In ion exchange chromatography (IEC), the steric mass action (SMA) isotherm model is
often used to describe the interaction between proteins and |IEC resins

The model assumes multi-point binding and the exchange of counter ions

Key SMA model parameters:

— Characteristic charge (number of sites of the protein with charged ligands on surface)

— Equilibrium coefficient (for the exchange reaction between the protein and salt
counterions)

— Shielding factor (sites shielded by the protein)

Parameters can be derived from S

molecular simulations of proteins  © ¥ by R ®

with appropriate surfaces o i ® ¢
0,8,8 6,8,0,80
TTY TYTTY

Shielding

K\/\Q Schrodinger CRS2024 | 59



Protein-surface simulations

Orient the protein above the surface with multiple unique orientations to avoid initial bias
and to improve sampling

Monitor orientations by comparing planar angles between surface and protein

Calculate SMA parameters throughout simulation and observe convergence

Protein Surface

Multiple starting orientations, full solvation and neutralization for MD

Use free energy simulations to estimate protein-surface binding energy
— Equilibrium coefficient

((Q Schrodinger CRS 2024 60



Engagement models

(@ Schrédinger
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&

SOFTWARE LICENSING
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CONTRACT RESEARCH

!
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How to work with Schrodinger

We can help with software,

technology evaluation, cloud access, workflows, cluster 2l
setup, paid research, collaborations | g&"
, | | _’{ﬁ
Let’s start a discussion

We are at booth 54

Adrian Komainda adrian.komainda@schrodinger.com
Irene Bechis irene.bechis@schrodinger.com

Dan Cannon dan.cannon@schrodinger.com /
* CONTROLLED RELEASE SOCIETY A&nl—lllzll ).I(EClillg |NTEGRATING Q‘M \
:::-.-.C RS 2 O 24 avo KX position Delivery Science :
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K N h 78\


mailto:Adrian.Komainda@Schrodinger.com
mailto:Irene.Bechis@Schrodinger.com

@ Schrod Thank you





