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MISSION
To improve human health and quality of life 

by transforming the way new medicines 
and materials are discovered through 

advanced computational methods
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Our unique commitment to scientific innovation, software 
development, and support

30+ years of 
innovation in 
molecular modeling 
scientific research 
and product 
development

Over 800 employees 
worldwide; 
>40% Ph.D.

More than 50% of 
the company 
dedicated to 
research and 
development

Large scientific 
support & education 
teams offer expertise 
and support in 
knowledge-transfer

Quarterly software 
releases with 
performance and 
feature 
improvements
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>800 employees spanning multiple sites across the globe

San Diego

Portland

New York

Cambridge
Framingham

Munich
Mannheim

Bangalore Hyderabad

Seoul

Tokyo
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Value of 
Modeling
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Accelerate your design cycle

  

Synthesis

DESIGN 
CYCLE

New design 
idea

Generation 
of chemical 

library

Physics 
based 

simulation

Machine 
Learning

Property prediction 
& understanding

Performance 
assessment

Next generation 
material

Schrödinger digital chemistry

Traditional experimental chemistry
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Increased understanding

Traditional R&D Incorporating Computation

Trial-and-error approach to test 
inputs and observe outputs

Simulation reveals molecular-level 
resolution, linking structure to function
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Software 
Platform
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Digital chemistry strategy built on three pillars

Machine 
learning

Physics-based 
modeling 

Collaborative 
informatics
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Simulate: access all methods in a single platform

Electronic
Periodic DFT

Atomistic
Molecular Mechanics
Molecular Dynamics

Mesoscale
Coarse Graining

Electronic
Molecular DFT

Machine 
Learning 

Enumeration /
Library generation

Time

S
iz

e Amplified by
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Modern, integrated, user-friendly GUI
MS Maestro
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Modeling and 
Simulation for 
Pharmaceutical 
Formulation & 
Delivery
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Capabilities for drug characterization and formulation
Application Capabilities

Characterization pKa, powder X-ray diffraction (XRPD), crystal morphology, density of crystalline or amorphous 
phases

Catalysis, Reactivity, Degradation
QM multistage workflow, bond dissociation energy, nanoreactor (API degradation), AutoTS 
(transition state searching), reaction channel enumeration, Auto Reaction Workflow (catalyst 
design), conformational search

Spectroscopy VCD, solution-state NMR, solid-state NMR, IR, UV-Vis

Crystal Structure Prediction Crystal structure prediction

Formulation and Delivery

Creating machine learning models for formulations, system builders (mixtures, polymers, 
surfactants, lipids, etc.), aqueous and solvent solubility of amorphous/crystalline API, API 
aggregation, glass transition temperature, mechanical properties, wettability (contact angle), 
separation during solvent removal (evaporation), API encapsulation in cyclodextrin, etc., 
excipient selection and ASD formulation, API solubility and LogP in excipient, solubility 
parameters, API — excipient mixing enthalpy, ASD separation and dissolution, 
protein/biologics excipients selection, hygroscopicity (moisture sorption) in amorphous solid 
dispersions, APIs, tablet coatings, solution viscosity, protein/polymer interactions, lipid 
nanoparticles, liposomes
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Machine Learning for 
Formulations
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Featurization: diverse materials systems

Small molecules
• Physiochemical, 

topographical descriptors
• Binary fingerprints (RDKit, 

Canvas)
• Graph-based convolution 

neural networks

Polymers
• Taking into account 

connections between 
repeat units

• RDKit fingerprints + 
customized descriptors

Periodic inorganic 
solids

• Element
• Lattice structure
• Oxidation state
• Intercalation descriptors
• 3D SOAP (with PCA)

Formulations and 
mixtures

• Composition
• Chemistry of the 

components
• Experimental/processing 

conditions

Physics-based descriptors:
• Quantum mechanics
• Auto Reaction Workflow

Physics-based descriptors:
• Molecular dynamics
• Quantum mechanics

Physics-based descriptors:
• Periodic quantum 

mechanics

Physics-based descriptors:
• Molecular dynamics
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Models Sampled

• Dense Neural Network
• Random Forest Regressor
• XGBoost
• TorchGraphConv
• GCN
• GraphSAGE
• GIN
• TopK
• SAGPool
• EdgePool
• GlobalAttention
• Set2Set
• SortPool

Consensus Model
• Prediction = an average of the predictions for 5 best models
• Uncertainty = SD across the 5 predictions

Model architecture, descriptor and 
hyperparameter combinations 
explored and optimized via 
Bayesian Optimization 

Data splits, featurization

Automated machine learning: DeepAutoQSAR
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Machine learning for aqueous solubility
• 8,773 molecules spanning 10 elements
• Trained on a GPU for 12 hours using DeepChem/AutoQSAR

R2=0.88

Dataset Reference: Sorkun et al. AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for 
a diverse set of compounds. Scientific data 6.1, 1-8 (2019)

CASE 
STUDY
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Formulation machine learning
Model evaluation/predictionData loading/visualization Model training

• Build, validate, and apply machine learning models based on chemistry and composition to predict any 
formulation property (e.g. density, viscosity)

• Allows input of external conditions, such as temperature, pressure, and so on

• Fully automated machine learning approach with automatic hyperparameter tuning
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CASE 
STUDY

Distribution of solubility and temperatureDataset summary
28,703 total examples: 128 drugs, 44 solvents

*Bao, Z., et al. "Towards the Prediction of Drug Solubility in Binary Solvent Mixtures at Various Temperatures Using Machine 
Learning." (2024).

Example of drugs

Guanidine 
hydrochloride Carbendazim

Example of solvents

Propylene glycol Dimethylformamide

Goal: Predict temperature-dependent solubility of drug in pure/binary solvents

Drug solubility: Bao et al. dataset
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Drug solubility: formulation machine learning 
CASE 

STUDY

Parity plot
Out-of-sample

90:10 train:test split

Test set prediction as a 
function of temperature

Test set prediction as a function of 
composition for binary mixture

1,3-phenylenediamine

Methanol
D

ru
g

S
ol

ve
nt

s

Water

• Formulation ML models used to create an accurate model for predicting solubility

• Model achieves an average test set R2 of ~0.93

• Model enables tunability in both composition and temperature
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Small molecules formulation and 
delivery
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Solubility parameters
Calculation of cohesive energy density allows for prediction of Hansen/Hildebrand solubility parameter (δ). 
Smaller differences in δ (<~7 MPa1/2) indicate miscibility

• Fast miscibility screening for API / solvent 
combinations

• Screening of 100s-1000s of solvents enables 
construction of a miscibility matrix

• API input can be amorphous and/or crystalline

Drug Solvent ∆δ (MPa)1/2 
(predicted)

Miscible? 
(experiment)1

Ibuprofen

Water 25.4 No (1.5 x 10-6 M)

Formamide 14.9 No (1.4 x 10-3 M)

Cyclohexane 6.1 Yes (0.15 M)

Ethyl Acetate 2.9 Yes (0.33 M)

1Exp. solubility from: T. Kitak et al., Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate, 
Molecules. 20, 21549 (2015)

ibuprofen water formamide cyclohexane ethyl acetate

CASE 
STUDY
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FEP Solubility: amorphous API into water

Mondal et al., A Free Energy Perturbation Approach to Estimate the Intrinsic Solubilities of Drug-like Small Molecules, 
ChemRxiv (2019)

ΔGsolubility

ΔGsublimationΔGsolvation

Solvated (1 M) Aggregate of small molecules 

Calculate the free energy to move molecule from the amorphous into the solvent via 
constructing a thermodynamic cycle 

ΔGsolubility = ΔGsolvation + ΔGsublimation

S = exp(-ΔGsolubility/RT)

FEP FEP
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FEP Solubility: crystalline API into water

Hong, R.S., et al, Free Energy Perturbation Approach for Accurate Crystalline Aqueous Solubility Predictions, J. Med. Chem., 
66, 15883 (2023)

CASE 
STUDY

• Dataset includes drug-like molecules from:

– DLS100 and Sol Challenge datasets 
(53 data points)

– AbbVie proprietary compounds 
(17 datapoints)

• Molecular weight range: 250 – 445 g/mol
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FEP Solubility: API into solvent

water
water

Experimental ΔΔG Computed ΔΔG

S2: experimental aqueous solubility 

ΔGsolvation,2: solvation free energy of solute in ethanol

Dark and light-orange typically depict 1- and 2-kcal/mol confidence bounds for simulated ΔG values (see Mey et al. Best Practices for 
Alchemical Free Energy Calculations LiveCoMS, DOI:10.33011/livecoms.2.1.18378). The bounds are expanded based on error 
propagation for the difference in two values of ΔG. i.e. dark orange: √2/2   light orange: √2 
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Input: 
• SMILES, 2D structure, .cif, etc., for API and 

solvents list

Output: 
• solvent solubility/water solubility ratio or 

solute solubility

Timeline: 
• ~2 days per API/solvent combination

CASE 
STUDY
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FEP Solubility: API into excipient

Water

PEG400

25%
PEG400

50%
PEG400

75%
PEG400

CASE 
STUDY
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Tackling Drug Solubility: AbbVie and 
Schrödinger Collaborate to Advance 
Accurate Prediction Methods

LINK TO BLOG

www.extrapolations.com/tackling-drug-
solubility-abbvie-and-schrodinger-
collaborate-to-advance-accurate-
prediction-methods/

Predicting crystalline solubility at an 
early stage not only enables the 
identification of potential risks but 
also aids chemists in prioritizing 
synthesis and molecular design.

“
— Richard Hong, AbbVie

LINK TO ARTICLE

https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c01339 

http://www.extrapolations.com/tackling-drug-
http://www.extrapolations.com/tackling-drug-
http://www.extrapolations.com/tackling-drug-
http://www.extrapolations.com/tackling-drug-
https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c01339
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water

ibuprofen

𝛃-cyclodextrin / ibuprofen inclusion complexes
All-atom system building: 𝛃CD, ibuprofen and water

βCD

full system

CASE 
STUDY
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𝛃-cyclodextrin / ibuprofen inclusion complexes
All-atom molecular dynamics simulation of 𝛃CD, ibuprofen and water reveals clustering and the formation of 
inclusion complexes  

CASE 
STUDY

Radial Distribution Function Cluster Analysis Extract Clusters

Equilibrated structure Waters hidden Inclusion complex



CRS 2024 30

From all-atom to particle representations
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Accessing larger and longer simulations with coarse-graining
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Automated DPD procedure
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Automated DPD procedure

V(r)
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Automated DPD procedure

DPD 
simulation

Atomistic 
simulation

+
－

Pair-distribution functions

Pair-distribution functions

Refine DPD parameters

Compare

● Molecules
● Compositions
● Build and AA MD 

settings

● Mapping scheme
● Bead volumes
● Fit and CG MD settings

V(r)
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CHALLENGE
Developing efficient drug formulations 
requires a clear understanding of 
mechanism behind the rate and extent of 
dissolution of amorphous solid 
dispersions (ASDs). However, such 
molecular-level understanding is difficult 
to obtain through experiments alone.

Optimize drug formulations with digital simulation

Result: Identified the root cause of unusual release profiles and enabled 
rational design of new polymers for desired drug release.

SOLUTION
AbbVie and Schrödinger used 
coarse-grained MD to understand 
dissolution profiles of ASDs. Doing so 
enabled evaluation of drug/polymer 
combination dissolution rates, identification 
of interactions responsible for delayed 
release, and enabled rational design of new 
excipients for drug formulations.
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ASD dissolution: API release
CASE 

STUDY

Image adapted from Fig 4 in Afzal et al. Molecular-Level Examination of Amorphous Solid Dispersion Dissolution, 
Mol. Pharm., 18, 3999 (2021)

Copovidone (CPV)

Soluplus (SLP)

AbbVie/Schrodinger collaboration involving:  Mohammad Atif Faiz Afzal,   Kristin Lehmkemper, 
Ekaterina Sobich, Thomas F. Hughes, David J. Giesen,  Teng Zhang, Caroline M. Krauter, Paul 
Winget, Matthias Degenhardt, Samuel O. Kyeremateng, Andrea R. Browning, John C. Shelley 

or +

water
CVP

SLP

Changing polymer in amorphous solid 
dispersions (ASD) has major impact on 
dissolution and release profile

Experiments show water permeates 
copovidone (CPV) ASD quickly while 
Soluplus (SLP) ASD dissolves slowly

GOAL 

Can we understand the polymer impact on 
dissolution? If so, formulation scientists can 
guide ASD selection and screening to best 
candidates
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ASD dissolution: dissolution of pure polymers at 37°C
CASE 

STUDY

DPD simulation resultsExperimental observations:

CPV

• Water permeates CPV very rapidly
• CPV largely dissolved within 30-60 min

SLP
• SLP dissolves more slowly and with a 

noticeable hydration front
• Some SLP remains undissolved at 60 min

SLP interfacial structures slow down 
water penetration

Exptl results: Pudlas et al. Eur. J. Pharm. Sci., (2015)
Simulation: Afzal et al. Mol. Pharm.,18, 3999 (2021)

Copovidone (CPV)

Soluplus (SLP)
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ASD dissolution: protonated acid API at low pH
CASE 

STUDY

DPD simulation resultsExperimental observations:

CPV
• Complete water penetration after 

20 minutes
• Potential, mostly transient, precipitation of 

drug after 5 minutes
• Drug and polymer still detectable at 30 

minutes

SLP

• Essentially no water ingress
• Essentially no dissolution
• Drug and polymer signals largely 

unchanged over 30 minutes Copovidone (CPV)

Soluplus (SLP)

 

Exptl results: Pudlas et al. Eur. J. Pharm. Sci., (2015)
Simulation: Afzal et al. Mol. Pharm.,18, 3999 (2021)
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ASD dissolution: hydrogen bonding in the solid state
CASE 

STUDY

Hydrogen bonding

Acid-caprolactamAcid-vinylpyrrolidone

CPV 
(C=O, C1)

SLP
(C=O, S3)

<
Water-vinylpyrrolidone Water-caprolactam>

DPD simulations in solution show:
• Greater number of Acid-S3 vs 

Acid-C1 interactions
• Greater hydration of C1 vs S3

Structuring at in SLP may also be 
a factor

 

IR spectra

Afzal et al. Molecular-Level Examination of Amorphous Solid Dispersion Dissolution, Mol. Pharm.,18, 3999 (2021)
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Self assembly of pure DPPC into a liposome

 Based upon: Lee et al., Coarse-Grained Model for PEGylated Lipids: Effect of PEGylation on the Size and Shape of 
Self-Assembled Structures, J. Phys. Chem. B, 115, 7830–7837 (2011)

CASE 
STUDY

Self assembly from a random distribution of DPPC in water

lipid head groups

lipid tails

water not shown

Simulation time

self-assembled 
liposome

System contains 546,832 coarse-grained 
particles with 10,496 DPPC molecules 
(representing >5,000,000 atoms; 400 Å 
simulation box size)
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Biologics formulation
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RNA Technology

● LNP protects cargo from 
cleavage/biochemical mutation

● After transfection, pH shift within 
the endosome will cause 
protonation of more ionizable 
lipids

● More charged lipids associate 
with negative lipids from 
endosome and degrade 
endosome

● mRNA cargo must escape 
endosome and begin translation

Image from Almushedi et al., Pharmaceutics, 13, 206 (2021)
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Apparent pKa

pKa = 10.44 pKa = 6.09

● Defined shift from solution single-molecule pKa values
● molar ratio of components within bilayer influences pKa
● It represents the pH where ionized = neutral species

All ionizable lipids in use have apparent pKa 
values within one unit

LNP assembly
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SpikeVax®*

Apparent pKa values of ionizable lipids in LNPs

Preprint available: Hamilton et al., Calculating Apparent pKa Values of Ionizable Lipids in Lipid Nanoparticles, ChemRxiv (2024)

• Apparent pKa values are 1.5 to 3.5 units lower than intrinsic pKa values

• Calculated apparent pKa values are highly correlated with experimental values

4.5

COMIRNATY®* Lipid A Onpattro®* SpikeVax®*

Lipid Mol % Lipid Mol % Lipid Mol % Lipid Mol %

ALC-0315 48 Lipid A 47.1 Din-MC3-DMA 49 SM-102 49

CHOL 42 CHOL 43.1 CHOL 40.8 CHOL 40.8

DSPC 10 DSPC 9.8 DSPC 10.2 DSPC 10.2

5.0

5.5

6.0

6.5

7.0

7.5

A
pp

ar
en

t p
K

ɑ

COMIRNATY®* Lipid A Onpattro®*

Experimental Calculated

CASE 
STUDY



CRS 2024 45

Modelling the assembly of RNA-loaded nanoparticles

Kularatne et al., Pharmaceutics,15, 897 (2022) 

All atom system (~72,000 atoms, simulated for 1.5 μs) mapped into CG
1 particle = 10 heavy atoms

Model System for Pfizer-BioNTech COVID-19 Vaccine

CASE 
STUDY
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RNA-loaded LNP self-assembly (low pH)
● Ionizable lipid is mostly (90%) protonated
● LNP self-assembles from homogeneous mixture in ~3 μs
● LNP has the correct characteristics:

○ Roughly 35 nm in diameter
○ mRNA encapsulated in aqueous channels lined with ionizable lipid
○ PEGylated lipid localized on the LNP surface

t = 1 ns t = 500 ns t = 1500 ns t = 3000 ns

~35 nm

Preprint available: Grzetic et al., Coarse-Grained Simulation of mRNA-Loaded Lipid Nanoparticle 
Self-Assembly, ChemRxiv (2024)

CASE 
STUDY
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RNA-loaded LNP self-assembly - effect of pH

Full LNP

50 nm

Cross section

Self assembly from a random aqueous solution in about 3 µs 
Ionizable lipids

mRNA

PEG lipids

Cholesterol, DSPC

Bleb formation after 
shift to higher pH

Preprint available: Grzetic et al., Coarse-Grained Simulation of mRNA-Loaded Lipid Nanoparticle 
Self-Assembly, ChemRxiv (2024)

CASE 
STUDY
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Circulation occurs at physiological pH (ionizable lipid largely deprotonates). Bleb formation at 
physiological pH has been observed!

Cheng et al., Adv. Mater., 3, 2303370 (2023)

Brader et al., Biophysical Journal 120, 2766 (2021)

RNA-loaded LNP self-assembly - effect of pH
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• Aggregation is a complex and not well understood process
– Irreversible self-association

• Hydrophobic and electrostatic surface properties may all contribute to aggregation

• We can project the contribution of hydrophobicity and electrostatics to the protein surface

Aggregation prediction: AggScore/Surface patch analyzer

Negative patch

Positive patch

Hydrophobic patch
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• Maa et al. International Journal of Pharmceutics 1996, 140:155-168

• The authors looked at insoluble and soluble aggregation of a number of phenolic compounds

• Idea: Use MXMD and AggScore to estimate the aggregation propensity induced by the excipients

Exploratory study: aggregation of recombinant human 
growth hormone (hGH) induced by phenolic compounds

Series of compounds are quite similar

2-Cholophenol Phenol Benzyl Alcohol Catechol Cyclohexanol
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Experimental aggregation data

Compound Size (nm) % soluble 
aggregate

2-Chlorophenol 32 40

Catechol 15 17.6

Phenol 7 7.2

Benzyl alcohol 5 2.8

c-hexanol 5 2.2

None/Water 5 1.5

Conclusion: 2-Chlorophenol > Catechol > Phenol > Benzyl alcohol ~ c-Hexanol > Water

The solution is filtered and soluble aggregates were measured by 
quasi-elastic light scattering (size) and SEC(% aggregate)
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Cosolvent tends to bind at hydrophobic hotspots

Negative patch

Positive patch

Hydrophobic patch

2-Chlorophenol
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Excipients induce exposure of hydrophobic pockets

X-ray
2-Chlorophenol

(highest AggScore frame)

Negative patch

Positive patch

Hydrophobic patch
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Hydrophobic interactions with the excipients

Compound % soluble 
aggregate

2-Cl-phenol 40

Catechol 17.6

Phenol 7.2

Bz-alcohol 2.8

c-hexanol 2.2

None 1.5

X-ray NA
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Preferential Interaction Coefficient

• Many biotherapeutics reach clinical development whilst carrying aggregation liabilities
– At this stage the therapeutic protein is sequence-locked and cannot be modified

• Formulation approaches often aim to negate aggregation by masking residues with a higher 
aggregation propensity
– Pairing the correct excipient(s) with the right protein is challenging
– Molecular simulations can be used to observe protein-excipient interactions

• Preferential interaction co-efficient (PIC) can be used to identify which excipients interact with 
certain residues better than others to impact aggregation
– Does a particular excipient interact with a particular residue preferentially over water?
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Preferential Interaction Coefficient: workflow

• Determine aggregation prone protein residues using AggScore

• Run molecular simulations of protein in presence of excipient(s) of interest

• Calculate PIC of aggregation prone residues to determine which excipient pairs best with which
aggregation prone residue

Molecular Simulations

Sorbitol Sucrose Trehalose
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Salt effect on antibody viscosity
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Salt effect on antibody viscosity
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Extraction of steric mass action parameters

• In ion exchange chromatography (IEC), the steric mass action (SMA) isotherm model is
often used to describe the interaction between proteins and IEC resins

• The model assumes multi-point binding and the exchange of counter ions
• Key SMA model parameters:

– Characteristic charge (number of sites of the protein with charged ligands on surface)
– Equilibrium coefficient (for the exchange reaction between the protein and salt

counterions)
– Shielding factor (sites shielded by the protein)

• Parameters can be derived from
molecular simulations of proteins
with appropriate surfaces
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Protein-surface simulations

• Orient the protein above the surface with multiple unique orientations to avoid initial bias 
and to improve sampling

• Monitor orientations by comparing planar angles between surface and protein 
• Calculate SMA parameters throughout simulation and observe convergence

• Use free energy simulations to estimate protein-surface binding energy
– Equilibrium coefficient

Protein Surface
…

Multiple starting orientations, full solvation and neutralization for MD
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Engagement models

TECHNOLOGY PLATFORM 

SOFTWARE LICENSING
CONTRACT RESEARCH



How to work with Schrödinger 

Let’s start a discussion
We are at booth 54

We can help with software,
technology evaluation, cloud access, workflows, cluster 

setup, paid research, collaborations

Adrian Komainda     adrian.komainda@schrodinger.com
Irene Bechis      irene.bechis@schrodinger.com
Dan Cannon      dan.cannon@schrodinger.com 

mailto:Adrian.Komainda@Schrodinger.com
mailto:Irene.Bechis@Schrodinger.com


Thank you




