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Yeo Lab

e Intracellular delivery
» Gene therapeutics
* Antimicrobial agents against intracellular pathogens

» New methods of delivering anticancer drugs
* Nanocrystals; nanoparticles; nanocapsules

 Immunomodulatory formulations
 Anti-inflammatory applications |
* Immunostimulating nanoparticles Yeo 1ab In lab Shirts, May 2022

e Long-acting local drug delivery systems E %5 6]
 Anti-inflammatory implants '
 Ocular drug delivery systems
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Intratumoral Delivery of Immunotherapy
“Act Locally, Think Globally” —

Act locally, function systemically
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Intratumoral Delivery of Immunotherapy

Coley, W. B., The Treatment of Inoperable
Sarcoma by Bacterial Toxins (the Mixed
Toxins of the Streptococcus Erysipelas and
the Bacillus Prodigiosus). Proceedings of
the Royal Society of Medicine 1910, 3 (Surg
Sect), 1-48.

Fic. 1.

Recurrent round-celled sarcoma. Spontaneous recovery following accidental
erysipelas. Photograph taken seven years after the cure.



BIOTECHNOLOGY

Bankruptcy of nanomedicine
firm worries drug developers

Financial troubles of leading biotech firm highlight challenges of making innovative drugs.

BY HEIDI LEDFORD

ot long ago, investors flocked to
Na firm in Massachusetts that

was hailed as the leader in
a wave of next-generation nano-
technology companies develop-
ing ways to ferry cancer drugs
to tumours. But on 2 May, the
company — BIND Therapeu-
tics — declared bankruptcy.

Researchers in the field of
nanomedicine are waiting
anxiously to see whether the
Cambridge-based firm will
pull through its financial crisis
— and whether its troubles will
taint the swiftly evolving field
of nanoparticle drug delivery.
“Ifsbeen a rapid rise and fall,” says
Eric Schmidt, a biotechnology ana-
lyst at the investment bank Cowen
and Company in New York City. “It’s
all unravelled pretty quickly”

Because nanoparticles lessen the amount
of contact that cancer drugs have with healthy
tissue, they offer a chance to deliver higher
doses with fewer side effects. In 1995, the US
Food and Drug Administration approved the
first such treatment, Doxil, which packages a
chemotherapy drug called doxorubicin in a
lipid nanoparticle. The particles are too large
to escape from normal blood vessels — and so
are less toxic to the heart than naked doxoru-
bicin — but they can seep out of the leaky blood
vessels often found in tumours.

BIND’s nanoparticles were designed to tar-
get tumours more precisely than liposome
particles can. The company’s lead product,
BIND-014, involves a polymer particle coated
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BIND Therapeutics’ nanoparticle is coated in
molecules that target it to tumours.

with a molecule that steers the particle to a
protein found in many tumours. The particle
releases the chemotherapy drugit carries, called
docetaxel, inside the tumour.

Early tests in animals and small clinical
trials showed that the approach was safer
than docetaxel alone — and fuelled BIND’s

But later clinical trials disappointed {BIND:

US$70.5-million initial public offering in 2013.

€ ys BIND chief scientific ofﬁcer
Ionathan Yingling.
In April, the company announced
that it would cut back on its work
with BIND-014, and Yingling says
that the firm will now explore
new targets. It cut the number
of employees by 38% and aims
to trim its expenses to $6 mil-
lion per quarter — a dramatic
decrease for a company that
spent $11 million on research
and development alone in the
first quarter of 2016.
After one of its creditors

demanded that BIND repay a

loan ahead of schedule, the com-
pany filed for bankruptcy (see
“Troubled times’). It plans to dis-

pute the need for early repayment at
alegal hearing on 18 May. “BIND isand
will remain open for business,” Andrew

Hirsch, president of the company, told inves-
tors on 9 May.

Schmidt says that BIND remains at the
technological forefront of nanoparticle drug
delivery, but waited too long to move away
from BIND-014. By then, the investor enthusi-
asm for biotechnology that had driven BIND’s
initial public offering had cooled. “People are
not interested in funding technology right now;”
Schmidt says. “They’re interested in funding
later-stage projects. And the one at this com-
pany didn't have what it takes.”

In the time since BIND-014 was developed,
researchers have also realized that differences
between tumours — such as size, density and
leakiness of the blood vessels that lace through

COURTESY BIND THERAPEUTICS
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Results of Phase Il study of NK105, a novel macromolecular
micelle encapsulating an anticancer drug

——— 2016/07/05
NC-4C
DACH-P

Active su
Oxalipl

Tokyo, Japan, July 05, 2016 - Nippon Kayaku Co., Ltd. (Head Office: Tokyo; President: Masanobu S
hereinafter referred to as “Nippon Kayaku”) announced that in a phase Ill clinical study of its in-ho
developed polymeric micelle anti-cancer drug NK105 in patients with metastatic or recurrent brea
cancer, the primary endpoint of the study, progression free survival (PFS), did not meet the prespe
statistical criteria. The study is a randomized, multinational study comparing weekly administratio
NK105 versus Paclitaxel in terms of efficacy and safety in patients with metastatic or recurrent bre
cancer. The primary endpoint of the study is statistical non-inferiority of PFS. Detailed efficacy anc
analyses from this study are expected to be presented at an upcoming scientific congress. Future
the development of NK105 will be further examined.

NC-63
Epirubici

NC-82

ADCM-E
About NK105

NK105 is a novel DDS (Drug Delivery System) formulation encapsulating active ingredient paclitax
macromolecular micelles.

Co-Research with Chugai Pharmaceutical and In-house research

NK105 >
Paclitaxel Micelle

Out hce ed to Nlppon Kayaku




Carrier consideration

*Retain immunotherapeutic agents locally to maximize
their pharmacological effects in tumors and prevent
systemic side effects

*Co-deliver multiple drugs, which share little
physicochemical features and would otherwise not
colocalize

« Stimulate antitumor immunity to leverage
immunostimulatory effects of therapeutic agents



Journal of Controlled Release 345 (2022) 586-600

Contents lists available at ScienceDirect @ P (;ﬁ.tr;(‘)lllled
Journal of Controlled Release 1
Bigami

R [ -

?’“’ 3 1 @ Sy

ELSEVIER journal homepage: www.elsevier.com/locate/jconrel e

Check for

Nucleic acid and oligonucleotide delivery for activating innate immunity in | &
cancer immunotherapy

a,b,*

Fanfei Meng “, Jianping Wang “, Yoon Yeo

2 Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
® Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA

ARTICLE INEF O ABSTRACT

Keywords: A group of nucleic acids and oligonucleotides play various roles in the innate immune system. They can stimulate

Cancer immunotherapy pattern recognition receptors to activate innate immune cells, encode immunostimulatory proteins or peptides,

e e E R Cre SIS or silence specific genes to block negative regulators of immune cells. Given the limitations of current cancer

Nu,delc amds_ immunotherapy, there has been increasing interest in harnessing innate immune responses by nucleic acids and

Oligonucleotides ; : ) : : : 2 : : ; v

Deng deltvery oligonucleotides. The poor biopharmaceutical properties of nucleic acids and oligonucleotides make it critical to
use carriers that can protect them in circulation, retain them in the tumor microenvironment, and bring them to
intracellular targets. Therefore, various gene carriers have been repurposed to deliver nucleic acids and oligo-
nucleotides for cancer immunotherapy and improve their safety and activity. Here, we review recent studies that
employed carriers to enhance the functions of nucleic acids and oligonucleotides and overall immune responses
to cancer, and discuss remaining challenges and future opportunities in the development of nucleic acid-based
immunotherapeutics.




Immunoactive complexes
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Polyethyleneimine 2E’ serves as an immunoadjuvant and enhances
derivative (2E’) . .
cancer cell uptake by antigen presenting cells (APCs)
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Zg:g(f;t';{f(“z‘gf;“"e 2E’ forms nanoparticulate self-assemblies with hydrophobic drugs

2E’/paclitaxel 2E’/carfilzomib 2E’/camptothecin
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Polyethyleneimine Paclitaxel (PTX) stimulates antigen-presenting cells
and induces immunogenic death of tumor cells

derivative (2E’)

.

Paclitaxel

2E’/

acliaxel 1:0.2

_ 30000

L

=
20000

TNF-« (pg/mL)

50000

40000

10000

0-

el

Dendritic cells

I I
O A PO
PR

[PTX] (ng/mL)

CRT exposure

}

€§§Eﬁ§E§YQ(+E§L

00

Fold increase

200

TNF-a (pg/mL)

50

201

-
(3]
1

-
o
1

[3,]
1

Macrophages Dendritic cells Macrophages
6 . 5-
Gl ~ - é ~ 47 T f
| - ®
Eql ilE o
(=] (o]
e e
o @ 2]
2 7 X7
1_
_* ¢ 1 1 1 0 1 1 I 1 1 0 I I I I I
° ‘;i\q,va‘*\@“’(\& Q ;f\béf’\,é\(\& N @%ﬁs\é\@g
[PTX] (ng/mL) [PTX] (ng/mL) [PTX] (ng/mL)
HMGB1 release ATP secretion Rechallenge
! 101 100y 5
o — PBS
o s
° € 807 ®  -» Gemcitabine
é :é_’ 60 -+ Oxaliplatin
2 5 == Paclitaxel
3 § 407 ~ Carfilzomib
- S 204
X

0-

<

N\
O
SO

v E
S

"N
ST TS
(¢

Days post vaccination

Soonbum Kwon



Polyethyleneimine 2E’ carries paclitaxel and siPD-L1, retaining its
derlvatlve (2E’)

S,PD L1 immunostimulatory effects.
a«f

2E’/PTX/siPD-L1
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Polyethyleneimine
derivative (2E’)
siPD-L1

W WW
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Paclitaxel

2E’/PTX shows selective toxicity to tumor cells
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CT26@Balbl/c

Polyethyleneimine
derivative (2E’)

Paclitaxel

Single local administration
of 2E’/PTX/siPD-L1 induces
immediate regression of
large established tumors
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120 100
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Day -7
(&

Single intratumoral injection of 2E’/PTX/siPD-L1 induces tumor regression and protects
animals from repeated tumor challenge in CT26@Balb/c model.
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Single intratumoral injection of 2E’/PTX/siPD-L1 primes systemic antitumor immunity in

B16F10 tumors.
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Intratumoral injection of 2E’/PTX/siPD-L1 inhibits growth and metastasis of 4T1 tumors
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Lymph node Polyethyleneimine

derivative (2E’)
siPD-L1

Downregulate
Treg, MDSC

Paclitaxel (ICD inducer)

ICD: Immunogenic cell death
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- Summary

« An immunoactive nanoparticle, 2E’ carrying PTX and siPD-L1, induced immediate
regression of established tumors upon a single local administration and enhanced
the activation of antitumor immunity, leading to systemic, long-term protection of
surviving animals.

« Each component played distinct roles to activate antitumor immunity, with 2E’
activating innate immunity against tumor due to the immunoadjuvant effect and
PTX inducing immunogenic cell death, which then activates T-cell immunity
against tumors. siPD-L1 contributed to the later step by preventing tumor
expression of PD-L1 that would otherwise engage in immune checkpoint
interaction and MDSC and Treg recruitment.

« 2E’ provides a simple and versatile platform for local immunotherapy by
accommodating combinations of chemotherapeutic drugs and nucleic acids that
address multiple events involved in the antitumor immunity.



PURDUE

COLLEGE OF PHARMACY

cer immunotherapy aims to selectively activate host’s immune response against tumors. Immunogenic cell
(ICD)-inducing chemotherapy can contribute to cancer immunotherapy by increasing the antigenicity of
tumor cells and facilitating the immune recognition of tumor antigens. However, poor drug retention and
ient recruitment of antigen presenting cells (APCs) to the tumor limit the efficacy of ICD inducers.
tic-co-glycolic acid) (PLGA) nanoparticles (NP) were developed to enhance the retention and availability of
ers at the tumor. Furthermore, PLGA NPs were surface-modified with adenasine triphosphate (ATP), a
emotactic signal to APCs. The ATP-modified PLGA NPs enhanced the recruitment of APCs to the tumors by
improving the stability and local availability of ATP. The ATP-modified PLGA NPs, loaded with paclitaxel (ICD
inducing chemotherapy), provided the chemoattractant activity and enhanced the antitumor activity of the drug,
leading to a significant delay in tumor growth. When combined with immune checkpoint blockade therapy, the
paclitaxel-loaded, ATP-modified NPs induced complete tumor regression in 75% of the CT26 tumor-bearing Balb/c
mice.

To develop a carrier of an ICD inducer that enhances the retention and stability of a drug and an APC attractant to
activate antitumor immune response

Immunogenic Cell Death

Immunogenic apoptosis of cancer cells can activate dendritic cells (DCs) and tumor-specific T cells to induce
effective anti-tumor immune responses.

Endoplasmic reticulum stress and reactive oxygen species production are key attributes of ICD induction.
ICD is mediated by damage-associated molecular patterns (DAMPs)

* Calreticulin (CRT) exposure

* High Motility Group Box 1 (HMGBL1) release

* Adenosine triphosphate (ATP) release

Paclitaxel and Carfilzomib

Paclitaxel (PTX) Carfilzomib (CFZ)

* Microtubule inhibitor » 2" generation of irreversible proteasome inhibitor

* Low water solubility (8.5 — 17 pg/mL) * Low water solubility (0.7-3.6 pg/mL)

* Cellcycle arrest in G2/M phase by interference  «  Antiproliferative and proapoptotic activities in tumor cells.
with spindle formation * Indicated for multiple myeloma as Kyprolis®

Indicated for breast, ovarian, pancreatic, and
lung cancer as Taxol® or Abraxane®

In clinical trials as a combination with anti-PD-L1 {
antibodies [

Paclitaxel Carfilzomib
Validation of ICD inducers
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Fig. 1. Release of damage-associated molecular patterns from CT26 cells treated with cytotoxic agents at IC50. Gemcitabine (GEM): non-
ICD inducer, negative control; oxaliplatin (OXA): known ICD inducer, positive control. (a) CRT exposure on the cell surface, (b) HMGB1 in
the medium, (c) ATP in the medium, (d) percentage of tumor-free mice after the vaccination study.

Immunofunctional Nanoparticle Design

ATP NH,.

* Adenine based nucleotide I\

" e 0.0, &Yy
MW: 507 g/mol HO—P—0—P—0—P—0L_ < | J

* Solubility: 50 mg/mL o oH o /'J\N N

Binds to P2Y2 or P2X7 receptors of dendritic cells
* Act as a “find me” signal

Promote phagocytic clearance of dying cells OH OH

ATP is loaded to the surface of polydopamine layer-coated PLGA NP (NP-pD-ATP) to
recruit dendritic cells

— —
Dopamine
ATP

PHBS
PLGANP NP-pD

DAild®O

Fig. 2. Schematic illustration of ATP conjugation to PLGA
NPs. PLGA-NPs were coated with polydopamine (pD) layer
in pH 8.5 to produce PLGA-pD. The amine group of ATP

NP-pD-ATP was conjugated to the hydroxyl group of pD.

Development of immunofunctional nanocarrier for cancer immunotherapy

Soonbum Kwon?, Boyang Dong?, Yoon Yeo*!:2
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Immunofunctional Activity of Nanoparticle
NP-pD-ATP recruits dendritic cells. NP conjugation increases the stability of ATP.
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Fig. 3. (a) Diagram of Transwell setup; (b) % THP-1 cells and (c) % JAWSII cells migrating across the Transwell in response to
treatments. (d) % JAWSI! cells migrating across the Transwell in response to NPs incubated in FBS or the supernatant. ATP, NP-
pD-ATP: 10 uM ATP equivalent. Free ATP and fresh NP are tested as references. (e) % JAWSII cells migrating across the
Transwell in response to ATP or NP-pD-ATP receiving apyrase challenge.

In vivo evaluation of PTX loaded NP-pD-ATP (PTX@NP-pD-ATP)

PTX@NP-pD-ATP shows greater antitumor effect than a mixture of ATP and PTX@NP-pD in CT26 tumors
and B16F10 mel 1a in the il hosts, while the difference is not observed in
immunodeficient nude mice cT2s@Balb/c BIGFI0@C5781/6

CT26@Nude
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Fig. 4. Changes in tumor size of (a) CT26@Balb/c, (b)
B16F10@C57BI/6, or (c) CT26@Nude after intravenous
injection of treatment (equivalent to PTX 20 mg/kg,
injection given every 3 days 4 times, n=8 per group.)
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PTX@NP-pD-ATP enhances tumor infiltration of DCs, macrophages, CD8* T cells better than the
mixture of ATP and PTX@NP-pD, but also increases Treg populations
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PTX@NP-pD-ATP combined with anti-PD-1 antibodies results in complete regression of CT26 tumor in

75% of the treated mice
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In vitro DAMP screening and in vivo vaccination study support that PTX and CFZ are ICD inducers.
NP-conjugated ATP retained chemoattractant activity. The conjugated ATP remained conjugated in serum
and showed greater stability than free ATP in apyrase.

PTX@NP-pD-ATP showed greater antitumor effect than a mixture of ATP and PTX@NP-pD, in a manner
dependent on an intact immune system.

Immunophenotyping of CT26 tumors treated with PTX@NP-pD-ATP suggests that the enhanced antitumor
activities have been mediated by the increased infiltration of dendritic cells, macrophages, and CD8+ T
cells in response to PTX-generated tumor antigens and ATP presented by the NPs.

Treg population also increased in the PTX@NP-pD-ATP-treated CT26 tumors, which may explain the tumor
growth in the later phase.

PTX@NP-pD-ATP combined with anti-PD-1 antibodies led to complete regression of CT26 tumors by
inhibiting Treg interaction with CD8+ T cells.
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