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Basic Issues

The gastrointestinal (Gl) tract is exposed to (bombarded by?) an incredibly
diverse range of materials and particulates

There are multiple physical, physiological, and biological barriers in place to
effectively restrict non-specific uptake from the Gl tract

Durable damage to that restricted uptake barrier can result in the loss of
homeostasis that is incompatible with life

The Gl tract of organized to hydrolyze polymers that compromise most
macromolecular drugs

Location and actions of these hydrolysis events are choreographed to
optimize nutrient availability at specific regions of the Gl tract

Hydrolyzed subunits of these foodstuff polymers are then selectively
absorbed for utilization as energy sources or for biosynthesis




Organization and Functions of Gl Tract

Propulsion

Swallowing (oropharynx)
Peristalsis (esophagus, stomach, small intestine, large intestine)

Chemical digestion

Enzymes designed to function in specific regions due to pH
optima and activation or pro-forms

Mechanical digestion

Chewing (mouth)
Churning (stomach)
Segmentation (small intestine)

Absorption

Nutrients, ions, and water to blood and lymph (small intestine)

Bacterial-products (phylloquinone, cyanocobalamin, thiamine,
riboflavin) and water to blood (large intestine)
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Oral cavity,
oesophagus

Stomach
(fundus, body,
pylorus)

Small intestine
lumen
(duodenum,
jejunum,
ileum)

Small intestine
brush border
(duodenum,
jejunum,
ileum)

Colon
(ascending,
transverse,
descending,
sigmoid

Enzymatic Hydrolysis in the Human Gl Tract

Salivary amylase

Amylase from
saliva

Pancreatic
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Pepsin

Pancreatic
enterokinase,
chymotrypsin,
trypsin,
carboxy-peptidases

Aminopeptidases,
carboxypeptidases,
dipeptidases

Low pH
denaturation
Proteins >
large peptides

Larger
peptides >
smaller
peptides

Small peptides
» amino acids

Pancreatic
nucleases

Nucleotidases

Nucleosidases
Phosphatases

DNA, RNA >
nucleotides

Gastric lipase

Pancreatic
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phosphates
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Fat globules
» doplets

Glycerol,
fatty acids,
glycerides

Water from
saliva (1.5
L/day)

Water from
gastric juice (2
L/day)

Water (2
L/day) and bile
salts from gall
bladder and
pancreas

Water (3
L/day) Bile salt
uptake in distal
ileum

Water
absorption (7-9
L/day)



Follow the Water

All digestive enzymes are hydrolases

Lumen of esophagus and small intestine
are potential spaces

* Space is expanded to accommodate digesting
packets of foodstuff: chyme to chyle

Organizations to maintain cavities
* Mouth — skeletal
« Stomach — complex muscle organization
» Large intestine — taenia coli (haustra)

Management of water inflex and efflux are
paramount to the digestive process,
occurring constantly but also regulated
locally in association with a meal

Dietary input

Food and drink 2000 mL °

Digestive secretions
Saliva 1500 mL

Gastric secretions
1500 mL

Liver (bile) 1000 mL

Pancreas (pancreatic -
juice) 1000 mL

Intestinal secretions
2000 mL

Colonic mucous
secretions 200 mL

<

5000 mL

-

9000 mL

Water
reabsorption

m——gpe- SMall intestine

1200 mL

—7 ¥

1400 mL

reabsorbs
7800 mL

- G OlON
reabsorbs
1250 mL

150 mL lost
in feces



of Biopharmaceuticals

« Oral delivery of macromolecules (protein, peptide, nucleic acid-based
therapeutics) are currently only efficiently administered only by subcutaneous
(SC) injection or intravenous (1V) infusion.

* There are several issues limit making oral delivery of biopharmaceuticals a
clinical/pharmaceutical reality.

 Instability in the digestive tract — looks like food
« Acidic stomach
« Pancreatic enzymes
* Glycocalyx enzymes

 Inability to cross the intestinal mucosa — protection
« Mucus as binding agent for viruses, etc.
« Epithelium can restrict water and ion flux

« Overcoming these barriers has been the focus of research for 100 years



Epithelia — the Ultimate Barrier to Macromolecules

Comparison of histology of
stomach, small- and large intestines

Esophagus - Stomach Junction

gastric
epithelium

stomach small intestine large intestine

B

Note differences in surface area, innervation,
WBC and blood/lymph vessels



Physical Approaches

a Physical penetration

Swellable microneedle
device

Thorny-headed worm

b Physical adhesion
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Physicochemical Approaches

Make the biopharmaceutical more stable — You ingest all kinds of very
stable materials the size of biopharmaceuticals. These end up in your poop,
not in your blood. Enzyme inhibitors can block normal biological processes.

Incorporate the biopharmaceutical into nanoparticles — There are many
nanoparticles that enter your Gl tract, the only ones that get into epithelial
cells are viruses, and they are typically not that efficient. Viruses rely on
replication to be injective.

Increase membrane solubility — Biologically relevant biopharmaceuticals
typically are designed to function either a cell membrane surface or inside of
a cell. Making them able to pass through membranes will likely make them
Inactive or incapable to being where they need to be to be active.

Improve mucus penetration capacity — This issue occurs with artificial
systems. Viruses and biopharmaceuticals have no problem with mucus.



Paracellular vs Transcellular

* Physicochemical properties
of relevant macromolecules
(protein, peptide, nucleic
acid-based therapeutics)
limit their transport to leak
pathway paracellular and
vesicular transcytosis.

Multiple methods are used
by epithelial cells to block
non-specific transcytosis.

Activation of leak pathway
IS associated with tight
junction dysfunction and
inflammatory pathologies.

bacterial uptake - ? ® _ 4 ®

large peptides/proteins Nac'I:"20| f. ® ' K bacterial products
SN L dLoD W large molecules

- small molecules
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» | contraction
actin-myosin ring

Endocytosis + transcytosis
+ exocytosis

Note, small molecules are naturally absorbed though the pore paracellular route.



The Reality of Microfold (M) Cells
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In humans, Peyer’s patches (PPs) consist of hundreds lymphoid follicles aggregated into

an oval shape in the terminal ileum.
In mice, there is a different organization and distribution with 6-8 PPs with 4 or 5 lymphoid
follicles dispersed at equal intervals along the entire length of the small intestine.

Cader and Kaser 2013 Gut 62:1653; Ohno 2016 J Biochem 159:151



Current State of Affairs for Peptide Delivery

 Permeability enhancers (PEs) identified through empirical testing

Over 250 paracellular and transcellular PEs have been described

Transiently alter permeability properties pf the epithelium and/or the
nature of the drug to enhance its transcellular movement

Without a Mechanism of Action (MoA), clinical translation is challenging
Generally safe in nature, these PEs must be co-delivered at high levels
At such high levels, a PE could also act to block peptidase activities
Provide low single digit increase in bioavailability (BA)

 Polymeric (nano/micro)particles

Believed to improve oral delivery outcome, no translation yet
» Drug stabilization

* Improved access to apical cell surface of epithelium



A Clinically Validated Peptide Delivery Approach

Schematic of Rybelsus® gastric tablet
composed of semaglutide and SNAC,
still unclear how it works.....

Kim et al 2022 Pharmaceutics 15:1585



Current State of Affairs for Protein Delivery

e Specific cell surface receptors
« Cyanocobalamin/intrinsic factor/cubulin receptor — Challenged by limited
receptor-mediated pathway availability

* Transferrin/transferrin receptor — Uncertain how this receptor that is
typically targeted to the basolateral surface can work for apical uptake

* Immunoglobulin G/Neonatal Fc receptor (FCRn)
» Toxin-based transcytosis pathway - validated in Phase 2
* Physical delivery using microneedles — Some validated in Phase 2

B
' - e
RaniPill™ B b f‘]\qmﬁ! v . SOMA/LUMI
——— I | = (iGN

Zizzari et al 2021 Drug Discov Today 26:1097



What Makes Sense?

Use endogenous mechanisms that occur in man

« Great outcomes in rodents usually does not translate to the clinic
Approaches for repeated use without epithelial damage

« Commercial viability requires repeat customers
Non-immunogenic materials

« Even PEGs can show immunological activity

« Gl tract, however, has the benefit of immunosuppressive properties
Consider Gl tract physiology

* Replacing a shot with a pill is not always practical

* Intestinal activity and extraction

« Hepatic-portal vasculature



Rate of Absorption umolhr/cm?2 serosa

Nutrients Modulation Paracellular Uptake

30 1 Specific for apical Na*-dependent
Paracellular + transporters for essential amino
Transcellular acids and glucose as secondary
dietary uptake mechanism.
PGS Free glucose is usually <25 mM in the
blood and body fluids, but digestion
can produce levels of 300 mM in the
microenvironment of intestinal TJs.
Transcellular, (A-B)
Uptake of tryptophan, the limiting
essential amino acid in the human
: AR — diet, is associated with enterocyte

v Y .
0 100 200 300 400 secretion of antimicrobial peptides.
Concentration in luminal perfusate, mM

Pappenheimer 1993 AJP Gastro 265: G409; Broer 2023 Ann Rev Nutr 43:12.1



Nutrient Uptake Regulation of [Ca**]
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Regulation of Myosin Light Chain Phosphatase

Rho A Arachadonic Diacylglycerol Inositol-3-
acid Phosphate
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MYPT1-PP1 Protein Interactions
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Site Specific Requirements of PIP 640

« Anticipated PIP 640 rdykvevr-NH, -
inter-facial contact PIP 641 rrdykvavrr-NH, Target binding
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Altered Efficacy of PIP 640 Peptides
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640 Peptide Localizes to TJs

Caco-2 cells were labeled in vitro for Occludin, Nuclei and
biotin-PIP 640 peptides using streptavidin-
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““PIP 640 PIP.641. PIP'642 PIP 643 PIP 644

PIP 640

Almansour et al 2018 J Controlled Rel 279:208



PIP 640 Increases Claudin-2 Protein Level

Control Peptide
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PIPs enhances paracellular (TJ)
solute uptake and permselective
properties to supress endotoxin
absorption. For comparison,
sodium caprate (C, ) transiently
removes claudin-5 and
tricellullin from TJs as part of its
actions to increase permeability
(Krug et al 2012 Biomaterials
34:275) as well as altered
intracellular Ca%* and membrane
fluidity (Twarog et al 2019
Pharmaceutics 11:78) which are
non-specific effects.

Almansour, et al. 2018 J Controlled Rel 279:208



In Vivo Mechanism of Action

=
3
[}
=
a
@
o

Peptide 250

Control
Control

MLC2
P-MLC2 ($19)
T=45 min time point
B
—~ 1.3+ x

B m= Peptide 250

 Cy3-Insulin remains at luminal surface after intra-luminal S M eplde 610
intestinal injection 2 or]
. . . . o V-07
» Co-administration with peptide 640 enhances the presence > o
. . . ‘@ 0.34
of Cy3 label to sites consistent with paracellular transport § 02
= 0.0~

0 Min 15 Min 45 Min 90 Min
Time after injection

Taverner et al 2015 J Controlled Rel 210:189



PIP Peptide Toxicity /n Vitro and In Vivo

Intestinal tissues taken 45 min after
intraluminal intestinal injection

* For all in vitro conditions tested,
complete TEER recovery was
achieved by 24 h following PIP
peptide removal.

* Initial in vitro studies using Caco-2
cells suggested that peptide 250
and 640, tested at concentrations
that modulated TEER and
paracellular permeability, did not
affect cell viability as assessed by
the mitochondrial membrane R
polarity marker MTS.
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In Vivo Uptake of Clinical Candidates
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=#- PIP 640 peptide + Exenatide =+ 10mg/kg Gentamicin/20mM PIP250

=¥ 10mg/ka Gentamicini20mM PIP251

-4 10mg/kg Gentamicin'20mM PIP252

>
1

g
L

Plasma concentration (ng/mL
$ £5$8¢83

0 10 20 30 40 5 60 70
Time (min)

Serum Gentamicin (pg/imL)

-
Ny
=)

-~ S .Calcitonin only 0 y
T -* PIP 840 peptide + S.Calcitonin Time (min)

pepise 1 i) | pgimy L avc pggmiming e
m 379+ 167 155 £ 30.4 36.5%
45 163£031  90.5%2.9 21.3%
45 3.62+0.02 127.4+2.1 31.0%

£ 582

-~
3 T

-

Plasma concentration (ng/mL)

0 10 20 30 40 50 60 70
Time (min)

Almansour, et al., 2018 J Controlled Rel 279:208; Taverner, et al., unpublished data



The Concept of PIP Peptide Actions

% PIP peptide Intestinal lumen 2 TIME =
() Insulin

Taverner et al 2015 J Controlled Rel 210:189



Cholix Undergoes Transcytosis
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Cholix Avoid Lysosomes




Basal concentration (ng/ml)
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Cholix Transcytosis is Efficient and Rapid
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AMT-101: Cholix-IL10 dimer
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AMT-101 Targets Macrophage

-

T cells
(CD3)

Macrophages
(F4/80)
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First Phase 2 Readout of AMT-101

Stool Frequency Response (% Patients)

50.0

40.0

w
o
o

o Patients

»~n
e
o

10.0

0.0

Stool Frequency Response at Week 12

400

amg Total

10mg

+ Pre-specified, stringent efficacy endpoint

0
+ AMT-101 demonstrated a rapid onset of stool
50 - =5y frequency response as early as week 2
409 L, 264 3e4 |  Rapid response is consistent with Phase 1b data
40 1 in UC patients
% 20 + Clinical response was maintained through
z ;2[# duration of treatment in both dose arms
o .
52 20 1 + Top-line interim data demonstrated additional
~o-AMT-1013 mg symptomatic improvements in fecal urgency,
10 - ~&~AMT-101 10 mg incontinence and abdominal cramps
~o-Total
0
0 2 6 8 10 12 14
Week > |
Patients Achieving Response, n(%)
Pre-specified AMT-1013mg AMT-10110mg  Total
Efficacy Endpoint  Endpoint Definition (n=10) (n=12) (n=22)
Stool Frequency Reduction of = 3 stools and
Response (%) at = 30% from baseline, 4 (40.0%) 4(33.3%) 8 (36.4%)
Week 12 OR = post-colectomy normal
Histologic Healing
Response (%) at Geboes score = 3.1 2 (20.0%) 3 (25.0%) 5(22.7%)

Week 12

Company Reports

selected to demonstrate stool frequency
response

+ 36.4% (8/22) patients achieved a stool

frequency response of 2 3 stools and 2 30%
from baseline, OR < post-colectomy normal

- Pre-specified protocol criteria (% of patients

achieving stool frequency response)
= 30%: Program may proceed to Phase 3
15% to 30%: Additional evaluation
< 15%: Program will not advance to Phase 3

+ DMC recommends advancing to Phase 3

with 3 mg dose



Evidence of AMT-101 Target Engagement

AMT-101 is designed to be restricted to the intestine following its uptake to
maximize local immuno-modulation actions while minimizing the ability of

systemic IL-10 to induce anemia and thrombocytopenia.

FOXP3

CD163 | -

FOXP3 - Regulatory T cell marker
Increases observed in both dosage groups
Results consistent with IL-10 target engagement

CD163 - M2-macrophage marker

Increases primarily observed in 3mg-dosed subjects
Positive correlation observed in patient’s FOXP3*

Tissue levels of |L-10 were also increased with both the 3mg and 10mg doses
providing evidence of active transport.



Biological Considerations of Oral Delivery

Fig. 1B : Fig.1C

Oral Delivery
—= Delivers directly to Hepatic
I? Portal Vasculature.
Lymphatic

Systemic Injection Targeted Agent

Delivers directly into Lymphatic circulation to

whole body circulation. the left subclavian vein.
P () 100% .

25-30% °
0
\ of a biophamaceutical 25-30 A’
th—e of a biopharmaceutical \ wil reach the liver of a biopharmaceutical
will reach the liver following oral uptake. will reach the liver
. following SC injection. | | ‘ following oral uptake.

When considering the oral uptake of a biopharmaceutical there can be issues of local
actions/ impact/ extraction prior to systemic access.



Insulin (uU/ml)
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Insulin Levels In Vivo
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Summary

An improved understanding of endogenous pathways and properties now provide novel
opportunities for the oral delivery of peptide and protein therapeutics.

Anticipated human outcomes can be achieved from the start.
It is important to align therapeutic goals with the approach.

Drugs optimized for and validated through systemic delivery may not be the optimal agent for
oral delivery approaches.

Drug properties used to select lead candidates may need to be re-envisioned to maximize
technology-specific outcomes.

Oral delivery outcome assessments for many peptide and protein therapeutics may need to
shift from PK to PD.

Gastrointestinal
+— PD delivery for a
peptide actingin

Subcutaneous
injection for a
peptide acting in
the hepatic portal
vasculature

the hepatic portal

+— Serum PK
vasculature

Level or response

Level or response

+— Serum PK

Time Time

Tools that provide efficient and consistent oral peptide and protein uptake can be used to
interrogate new biology and thus, novel therapies.
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