Predicting Subcutaneous Drug Absorption via Machine

Learning Attempts and A Custom In Vitro Device

Hao Lou, Ph.D.

Biopharmaceutical Innovation & Optimization Center

Department of Pharmaceutical Chemistry

THE UNIVERSITY OF

KANSAS




Current Status of SubQ Products
Analysis of FDA Database (National Drug Code Directory)
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Unpredictable & Variable In-Vivo Properties
Humira® (Adalimumab) Bioavailability:
 Monkey (96%); Human (64%)
Herceptin® (Trastuzumab) Tmax:
* Mice (7 hours); Minipig (1 day); Human (4 days)

Lack of Models

* No reliable pre-clinical animal models




[ Methods to Study SubQ Drug Delivery ]
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[ Machine Learning to Predict mAb Bioavailability
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Feature Selection ]
A total of 47 features related to molecules and formulations
Features mostly obtained from computational calculation instead of experiments

29 Features obtained 16 Features obtained 2 Features obtained
based on Sequence based on Ternary Structure based on Formulation

Adalimumab
>Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQS
GVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIKRTVAA
PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQD

SKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
>Heavy Chain

EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITW
NSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSLD
YWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS
GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP
KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV
KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK

ALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWES Ternary Structure of Fv Region Published Literature; Filing

NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT

QKSLSLSPGK (Computational Prediction) Document; Insert, etc.
Examples of Features Examples of Features Examples of Features

* # of Amino Acid * Energy per AA *  Formulation Concentration

*  Molecular Weight * Charge per AA *  Formulation pH

* Theoretical pl * Dipole Moment

* Theoretical Charge @Ph7.4 * Positive/Negative Patch Size Some important information (e.g.,

* Hydropathicity (GRAVY) * Solvent Accessible Surface Area viscosity, glycosylation pattern, etc.) are
* Aggregation Propensity (SASA) missing due to data confidentiality

* CDR Length * SASA Polar

* V,/V, Packing Angle * SASA Apolar 6




Dimensionality Reduction

* Some features are correlated

e Reduceto 10

PC1

PC2

PC3

New Features

and redundant

new features (PCs) from 47 features with 78% of the data variances re

“Charge” Features
pl Value

Charge@pH7.4
Charge per AA
Positive Patch Size

“Length” Features
# of AA

MW

CDR Length

“Hydrophobicity”
Features

Aggregation Propensity
Intrinsic Solubility

Solvent Accessible Surface Area
(SASA)
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' mAb SC Bioavailability Prediction: > or <70% |

Machine Learning

(VL‘P uts: W%m Outp uts:

MAD § Formulation = Subeutaneous
Properties  ‘Bloavailability

Machine learning algorithms Training set accuracy (%) Validation set accuracy (%)
RF 92 78
AdaBoost 89 78
DT 89 78
MLP 94 67
GaussianNB 75 67
kNN 12 67

Applicable to some early-stage research activities, e.g., mAb design & mutant screening

Lou H, Hageman M. Pharm Res 2021;38(3)



{ Methods to Study SubQ Drug Delivery ]
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Wms in an Integrated System
" Machine Learning:\ [ In-Vitro Models to Simulate SubQ Site J
mAb SubQ

Prediction (Emulator of SubCutaneous Absorption and Release)

Bioavailability [ ESCAR J
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Oral vs. SubQ

USP Dissolution Apparatus:
Standard System for Oral Products

No Standard System
for SubQ Products

A

URGENTLY
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Lou H, Hageman MJ. Mol Pharm 2022.19(11)
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ESCAR Design

e Extracellular Matrix
(hyaluronic acid)

* Fat Tissue

* Drug Uptake

* Tight Junctions

e Convection/Liquid
Flow

lonic Strength

* pH & Temperature &

/
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CHs

O NH

OH

Small Molecule

.

Computer-Aided Design

Peptide

SC Chamber Design

N O

Application

Protein

ESCAR Design & Fabrication

id

i

3D-Printing: Acrylonitrile Butadiene Styrene (ABS)

Formulation/DDS

Solution
Suspension
Gel

Nanoparticle/Microparticle

Depot System

12



In-Vitro-In-Vivo-Correlation (IVIVC): Griseofulvin Suspension

. 1.5 mg (5 mg/kg) mllled

Formulation 1: Formulation 2: “ v;,
Micro-Suspension Nano-Suspension ’ l’
(UnMilled) (Milled) . j‘
In Vivo ESCAR
« Study Rat PK * Develop Drug Release Method
(geometry, medium, condition, etc.)
s 0.20 ® 60mg/kg milled 1.5-
3 B 30mg/kg milled —
c [ | A 30mg/kg un-milled (2] %
8015195 "™ . ® 5mglkg milled In-Vivo E1.2 i
o
% : can be o 09 i i
A . :
3 01004 | = . predicted by % ; ) % %
5 . o In-Vitro? X )6 % %
% A N g . 3
0.05 S @ 18 mg (60 mg/kg) milled
g ¢ i 0.3; s B 9 mg (30 mgrkg) milled
) - # A 9 mg (30 mg/kg) un-milled
% 0.00 0.0

o
0o -

16 24 20 40 60 80 100
Time (hr) Time (hr)

Replotted from Chiang P-C, et al. ) Pharm Sci. 2019;108(1).

o
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Two-Compartment Model for Griseofulvin PK

Absorption

abs.rate

dAmtl
= — kygAmt1 — kyp Amt1 + kyy Amt2

dAmt?2
= klemtl — k21Amt2
dt
Amtl
Concl =

Elimination

__________________________________________________________

Find a Correlation between
Absorption Rate & Release Rate

(In Vivo) (In Vitro)

(ibs. Rate
Abs.Rate =
- Atlin vivo

_ Dose X F(bg + by X (t + At) + by X (t + At)? | yiero ) — Dose X F(bg + by X t + by X t%] i pitro )
B bO +b1 X (t‘l'At) +b2 X (t+At)2|in vitro _bO +b1 X t+b2 X tzlin vitro

S S S

14
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External Validation Data

Internal Validation Data

o ® 5mg/kg milled @ 60mg/kg milled

= 0.20 — 5mg/kg milled (predicted) — 60mg/kg milled (predicted)

=. B 30mg/kg milled

: — 30mg/kg milled (predicted)

o) — A 30mg/kg un-milled

-C"_-U. 0- 1 5 1 () ‘ ® — 30mg/kg un-milled (predicted)

- [

c LA -

8 0.10 °

S | =

(& A

g 0.05 »

)

S

Q- 0.00 — . ——

0 5 10 15 20 25
Time (hr)
Internal and External Validation for the IVIVC Model
Dose/Formulation Data Type Cmax (uM) AUCO0-24 (uMxh)
Obs. Pred. %PctErr Obs. Pred. %PctErr

18 mg (60 mg/kg) milled Internal 0.154 0.163 -5.7 2.95 2.77 6.1
9 mg (30 mg/kg) milled Internal 0.166  0.165 0.9 2.64 2.63 0.5
9 mg (30 mg/kg) unmilled Internal 0.114 0.109 4.4 1.71 1.74 -2.2
Average absolute %PE for internal validation m——) 3.6 2.9
1.5 mg (5 mg/kg) milled External 0.161 0.137 14.9 1.91 2.13 -11.5

15



SUMMARY of ESCAR & IVIVC (small molecule)

Model 1: ESCAR
e Reasonable emulation of in vivo SC environment

Model 2: In-Vitro-In-Vivo-Correlation (IVIVC)

* Predict the PK profile of micro- and nano-suspensions for poorly
water-soluble drug

* Reduce experimental efforts related to in vitro/in vivo studies

16



Critical Parameters of ESCAR (Acetaminophen 10 mg/mL Solution)

4 N

Factors may affect PK?
1. Hyaluronic Acid (HA)
Level: Elder vs. Child
2.Dose: 5mgvs. 10 mg
3. Injection Position

/ L Design-of-Experiment (DoE) Factor Screening

3x3x2=18 runs in triplicate
Factor 1 HA Concentration (3 levels)
Factor 2 Dose/Injection Volume (3 levels)
Factor 3 Injection Position (2 levels)

17



Statistical Model vs. Machine Learning Model

Regression Score: R?

V(2 hr) = 72,03 + 1.030X;*- 16.313X; -1.216X; -10.826X;; R*= 0.9676

s 43 Predictive Y(2 hr)
€ § 742759 Models CrossValidation?
s = [4.98347,
g ~ 9.87171) No Yes: 4 Fold
2 Pol ial
eynormis 0.9676 NA
Equation
u:;l;\:::;;ra ion nec i;n” njec ic;ﬁ ; 7c>si ion DataSEt
:[-{r:g?mu o Lfélurt'nelij) Lc;ll\;'ltembrimet[cm) Support Training:
Vect '
e o.r 0.9845 0.9944
Machine —
a (SVM) Validation:
. 0.9283
—— fit with Weibull Eq.: a=0.200, b=0.711, c=7.287 Dataset
Training:
Ly Random
Forest (RF) 0.9896 0.9882
__60] Validation:
X 0.9146
_5 501 Dataset
(s . Training:
Gradient
£ 40] / Soostin 0.9960 0.9970
4 & Validation:
239 0.9290
&) . Dataset
Multilayer Training:
10/ Perceptron 0.9976 0.9973
(MLP) Validation:
0! , i i i i 0.9370
0 1 2 3 a 5 6 7 8
Time (hr)

18



SUMMARY of DoE Study (small molecule)

Critical Parameters for Drug Release
* HA Concentration (Critical); Dose & Injection Position (Non-Critical)

Data-Driven Model
* Machine learning & statistical models can predict drug release
* Improve prediction of DoE data with convoluted pattern

19



ESCAR Applications to Peptides

* High Concentration Peptide Formulation

Facts we know: ,
. : Negar Jafari
Lanreotide aggregates above 3% w/v in water PhD Candidate

KU Pharm Chem Dept

1% Lanreotide 5% Lanreotide
12 - 12 -
g
HPBCD

10 - % 10 A
o) o
S 8- o g
© R
© 3
€ g - e w ©
% >
S - 5 4
(@] o
o N
x 2 - ¢ 2 A M'//‘

0 T T T T T 1 0 T T T T |

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time ( hr) Time ( hr)
® 1% Lanreotide e 1% Lanreotide: 5% HPBCD © 5% Lanreotide * 5% Lanreotide: 25% HPBCD

B-sheets 20



ESCAR Application to Proteins

CH,
Small Molecule & Peptide Protein
® NH . rrotein -
v" Acetaminophen v Bovine Serum Albumin (BSA)
v Griseofulvin
v Lanreotide
OH

Hyaluronic Acid
r HO OH .
\:0
\\0 0 o]
Ay
]
HO o
OH \H
O:<

L n

Small Molecule Protein 21



BSA — HA Electrostatic Interaction

8 residues have strong interaction with HA
(2R & 6K)

1 MKWVTFISLL LLFSSAYSRG VFRRDTHKSE IAHRFKDLGE EHFKGLVLIA

51 FSQYLQQCPF DEHVKLVNEL TEFAKTCVAD ESHAGCEKSL HTLFGDELCK
101 VASLRETYGD MADCCEKQEP ERNECFLSHK DDSPDLPKLK PDPNTLCDEF
151 KADEKKFWGK YLYEIARRHP YFYAPELLYY ANKYNGVFQE CCQAEDKGAC
201 LLPKIETMRE KVLASSARQR LRCASIQKFG ERALKAWSVA RLSQKFPKAE
251 FVEVTKLVTD LTKVHKECCH GDLLECADDR ADLAKYICDN QDTISSKLKE
301 CCDKPLLEKS HCIAEVEKDA IPENLPPLTA DFAEDKDVCK NYQEAKDAFL
351 GSFLYEYSRR HPEYAVSVLL RLAKEYEATL EECCAKDDPH ACYSTVFDKL
401 KHLVDEPQNL IKQNCDQFEK LGEYGFQNAL IVRYTRKVPQ VSTPTLVEVS
451 RSLGKVGTRC CTKPESERMP CTEDYLSLIL NRLCVLHEKT PVSEKVTKCC
501 TESLVNRRPC FSALTPDETY VPKAFDEKLF TFHADICTLP DTEKQIKKQT
551 ALVELLKHKP KATEEQLKTV MENFVAFVDK CCAADDKEAC FAVEGPKLVV
601 STQTALA

Molecular Dynamic Simulation
* 1BSA

« 30 HA (Monomer)

160 mM lonic Strength

« pH7,34°C 22



BSA — HA Electrostatic Interaction

23



100+
X PBS
® 2.5mg/mL HA
® 5mg/mL HA
3 *1 ¢ 7.5mg/mLHA
=
o
E 60~ T
e
% 404 1 X
o I i
< T
7]
m 204 l i i i ' I

0 5 . 4 6 8
Time (hr)

Ways to Enhance Protein Migration?

Apply Pressure to
Lymphatic B iSiad generate convection

capillary Capillaries Tissue cell

X




Navier-Stokes Equation

Mass Balance: %E+V-(pu) =0

0
Momentum Balance: Pa—?w(u- Viu =V [-pI+1]+F

Impact of Liquid Flow on BSA Release

 BSA SKU: 15 mg /0.5 mL

* DoE Study: 3x3=9 runs in triplicate

Factorl Liquid Flow Rate (3 levels)
0,0.5, 1 mL/h

Factor 2 HA Concentration (3 levels)
2.5,5,7.5 mg/mlL

25



1 Dataset
27 Data Points

BSA Release (%) at 8h

BSA Release Prediction & Modeling

Bootstrap
Sampling

A 4

1000 Datasets
Each with 27
Data Points

— 85

: b
: HA Concentra\'\or\ (mg/m )

HA Conc: 5 mg/mL;
Flow Rate: 0.5 mL/h;
BSA Release ~ Norm Dist.
M: 46.8; 0: 4.68

Number of Counts
]

&
Predicted Value

26



Dose/ Injection Volume -Effect on BSA (30 mg/mL) Release

o
o

[=2]
o

IS
=)

100+
® 30 mg Dose (1 mL InjVol)
1 ¢ 15 mg Dose (0.5 mL InjVol)

BSA Release Fraction (%)

Injection Volume: 0.5 mL Injection Volume: 1 mL I
(Dose: 15 mg) (Dose: 30 mg) | I
Current Study New Study ; I | ,

Flow Rate: 0 mL/h
HA Conc: 7.5 mg/mL

D
?

* To investigate drug release (@30 mg dose/1 mL Injection volume), do

another complete study? Can we do fewer experiments?

27




Model Migration

0.5-mL Injection

1-mL Injection

Old Study | Similarities | New Study
e.g. release study < > e.g. release study
for 15 mg dose for 30 mg dose
Complete
Study Fewer
e.g., 27
experiments Data
! Migration !
Base Model > New Model

Model Migration:
Bayesian Inference Method

(Mo n i1 xi)
_ oy o
I’tl - 1 n
(? * ?)
0 0




Model Migration

Prediction from 0.5-mL Base Model

Old Study Similarities New Study New Study
e.g. release study [ > e.g. release study e.g. release study
for 15 mg dose for 30 mg dose for 30 mg dose
Complete Fewer VS Complete
DoE Data DoE
. . \ Y
Y Migration (
Base Model > New Model New Model
9 eXgriments 27 Iments
100 100
+ 0.5-mL Base Model - * New Model Migrated from 0.5-mL Base Model
<
<}
80 = g0 B
3 c 8¢ o%°
m .2 S .-..
mn % LY
* - 2 - ] ¢
60- Lt S 60 % %
. * u!, ® 9
. * =) T L]
e £ 3
40+ * O = 40
e . =
. c 5
? * o * 9 .E
L 2 -~
20- . § 20-
a
c ““ 1 b L v 1 b L 0 l‘l’ 1 b L] v T b L]
0 20 40 60 80 100 0 20 40 60 80 100
Prediction from 1-mL New Model Prediction from 1-mL New Model 29



SUMMARY of Peptide & Protein Studies

Peptide (Lanreotide) Release in ESCAR
* Emulation of Lanreotide release from SubQ depots
* Impact of Excipients (HPBCD) on aggregation and release
Protein (BSA) Release in ESCAR
* Slow diffusion of BSA in HA solution
e Convection and liquid flow increases BSA release
Model Migration: Bayesian Method

* Develop model migration strategy to reduce experimental efforts related to
dose/process changes and tech transfer

30



Thank you

KU Pharmaceutical Chemistry Dept.
KU Chemistry Dept.

KU BioCenter
KU Nanofabrication Center
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