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Therapeutic approaches

PROTEINS
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RNA based therapeutics
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The challenge in RNA therapeutics

* An appropriate delivery system.

* Requirements:
« Efficient RNA encapsulation
« Evading clearance mechanism
 Avoid toxicity and immune activation
 Carrier internalization
 RNA release
« Specificity




Lipid nanoparticles (LNPs)

Components: Lipid mixture in ethanol

» Cholesterol

« DSPC

« PEG-DMG
 lonizable lipid

50 nm LNP
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* Nucleic acid protection

* Increase stability in circulation
 Increase therapeutic effect
 Clinically approved




Laboratory of Precision NanoMedicine

Exome / Transcriptome analysis
Target Discovery & Validation

Tailor-made the
appropriate nano-
RNA Delivery systems (from lipid synthesis) to vehicle, selective
Generation of mAbs & Protein Engineering targeting agent and

‘_ : N . W specific therapeutic
payload




The Complexity of Human Disorders




Targeted delivery platform

 Targeting moiety-
« Antibodies
» Peptides
* Ligands
* Aptamers




Antibody targeted LNPs construction

Conjugation Antibodies are not alike Fc exposure
efficiency Poor binding

Chemical
conjugation

Linker strategy

Affinity Same Fc Controlled
orientation



Anchored Secondary scFv Enabling Targeting — ASSET

Signal peptide | Lipidation peptide; mCherry , Anti-rat IgG2a scFv

Dr. Ranit Kedmi Dr. Nuphar Veiga

Kedmi, R. et al. Nat. Nanotechnol. 13, 214-219 (2018).



ASSET as a Targeting Platform

ASSET Rat IgG2a antibody




ASSET as a Targeting Platform




Modular platform
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~_Versatile in vivo targeting
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Therapeutic applications
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Mantle cell lymphoma (MCL)

» Aggressive form of B cell non-Hodgkin lymphoma

« Relatively rare (~6% of all NHL cases)

« Considered “incurable” with traditional chemotherapy
« Median overall survival: 5-7 years
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| stage Il Childhood



Mantle cell lymphoma (MCL)

* Therapeutic approach: Silencing

* Target gene: PLK1

 Target cells: CD29



Prolonged Survival in MCL Model using
CD29 targeted sIPLK1-LNPs
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Therapeutic approach for MCL
treatment

* Therapeutic approach: Silencing

Silence

* Target gene: PLK1

 Target cells: CD29
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* Therapeutic approach: Silencing ‘

e Target gene: HO1

WILEY-VCH

* Target Receptor: PDL-1

Seok-Beom Yong, Ph.D



Single gene (HO1)-targeted lipid nanoparticle for chemo-immunotherapeutic boost in cancer

*Dual function of HO1 gene in tumor
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In vivo anti-tumor effect in combination with chemotherapy (Dox) & immune reprogramming effect

Increased tumor delivery by PD-L1-targeting Anti-tumor effect in combination with chemotherapy
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Anti-tumor effect in combination with chemo-immunotherapy
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Cancer

* Therapeutic approach: Silencing

e Target gene: HO1

* Target Receptor: PDL-1



Delivery of Therapeutic RNA to the
Bone Marrow in Multiple Myeloma
Using CD38-Targeted Lipid
Nanoparticles




Screen of ionizable cationic lipids for the transfection of human MM cells
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Therapeutic effects of LNPs-siRNA-CKAPS5 on CAG cells in vitro
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Characterization and evaluation of anti-CD38 targeted LNPs
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Establishment of novel xenograft MM mouse model
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In vivo biodistribution of targeted LNPs in MM-bearing mice
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In vivo therapeutic effect of aCD38-tLNPs-siRNA-CKAPS5 in MM-bearing mice
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Using bacterial toxins as novel local therapy for solid tumors

B16-melanoma

Tumor
tumor-bearing growth
PE- mice inhibition
encoding
MRNA-
LNPs

MRNA-LNP delivery
to tumor cells

O

PE expression

Apoptosis

Granot-Matok Y. et al. Theranostics 2023
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Intratumorally-injected, repeated doses of mmPE-LNPs caused in-vivo apoptosis in tumor cells

PBS mmFluc

Caspase-3
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Granot-Matok Y. et al. Theranostics 2023



Inflammatory Bowel Disease (IBD)

* Chronic inflammation of the gastrointestinal (Gl) tract.

* Types of IBD include:
* Ulcerative colitis.
 Crohn's disease.

» Current treatment:
 Anti-inflammatory drugs
* Immune system suppressors
e Surgery




Therapeutic approach for IBD treatment

* Therapeutic approach: Silencing

* Target gene: IFN vy

» Target Receptor: Integrin o,f3-




The next level of Targeting —
selective targeting against
receptor conformation

Dr. Niels Dammes




Inspired by leukocyte homing
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Conformational change
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Targeting concept
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Dammes N. et al. Nature Nanotechnology 2021



CD45 silencing

Experimental plan DSS colitis b
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Molecular imaging of inflammatory leukocytes in experimental colitis using
PET/CT and D1D2-NOTA-%4Cu
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Injection scheme efficacy experiment IL-10KO

Start piroxicam

\

LNP injections (1.5 mg siRNA / kg bodyweight)
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Dammes N. et al. Nature Nanotechnology 2021
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Dammes N. et al.
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Therapeutic approach for IBD treatment

* Therapeutic approach: Silencing

* Target gene: IFN vy

* Target Receptor: Integ




Alternative therapeutic approach for IBD
treatment

* Therapeutic approach: Activate |’
* Target gene: IL-10

 Target cells: Ly6CH




Structural Design of lonizable Lipids “,‘L\/ADVANé\E/IS/
" MATERIALS

Dlin-MC3-DMA @&’g

—

Cationic

Head Group

NH,-NH,

NH,-OH

Dr. Srinivas Ramishetti

Based on the gold standard we have synthesized 60 lipid families

Ramishetti S. et al. Advanced Materials 2020



Using Microfluidic Mixing for Generating LNPs

Y The starting point for
\D“ii)‘!:/ . )
'fﬁfif\\;? formulation studies

L T -
Lipids in Ethanol e : g—»‘éf Lipids mol
>~ )

L’\ lonizable lipid 50%

P DSPC 10%
siRN'/-:> Cholesterol 38.5%
hat AV DMG-PEG 1.5%

Acetate buffer at pH-4.5

DSPC- 1,2-Distearoyl-Sn-glycero-3-PhosphoCholine
DMG-PEG- 1,2-Dimyristoyl-sn-glycerol, Methoxypolyethylene Glycol



LNPs Characterization

Structural characterization
of SIRNA-EA2-LNPs by cryoTEM

Zeta-potential
(mV)

Dlin-MC3-DMA 44.5 0.18

HZ-35 45.1 0.14 18.5
HZ-25 56.3 0.06 13.9
HZM-45 50.5 0.08 18.5
HZM-50 108.5 0.10 20.4
HZM-55 52.5 0.11 10.1
HZM-Im 46.0 0.15 -10.8
HZM-Pip 67.7 0.16 2.8
HZM-Gly 52.8 0.07 -1.5
EA2 59.0 0.08 6.7
EA2-Pip 97.0 0.17 -1.28
EA-406 138.6 0.06 -1.82
HyAm-Gly 75.1 0.04 -13.6
HyAm-2 44.3 0.09 -3.6

Ramishettl S. et al. Advanced Materials 2020
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Organ specific delivery or cell specific ?
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MRNA Vaccines

LNP RBD-hFc mRNA vaccine protects hACE2 trangenic mice against a lethal SARS-
CoV-2 challenge..




LNP RBD-hFc mRNA vaccine protects hACE2 trangenic mice against a lethal
SARS-CoV-2 challenge

Collaboration — Dr.
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Fast response for a highly mutated pathogen

a b SARS-CoV-2 VOC

SARS-CoV-2 - N

Alpha (B.1.1.7) Beta (B.1.351) Gamma (P.1) Delta (B.1.617.2) Omicron (B.1.1.529)

15 mutations
in RBD region

Huang X., Kon E. et al. Nature Nanotechnology 2022



mRNA vaccine

Orignal mRNA vaccine Variant-moidfied mRNA vaccine Chimeric spike mRNA vaccine

b Variant Antibody-mediated
immunity

Protein vaccine

Cell-mediated
immunity

/' Neutralizing
antibodies

Splke protein Endosom
Translation

antigen
r@ RBD antigen
mRNA 2 %
Ribosome 0o
Antigen &F =
Proteasome fragment

Huang X., Kon E. et al. Nature Nanotechnology 2022

RBD-24-mer NP vaccine
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HISTORY OF PANDEMICS

PAN-DEM:-IC (of a dIsease
a whole country or

THROUGHOUT HISTORY, as humans
spread across the world, Infectlous
diseases have been a constant
companion. Even In this modemn
era, outbreaks are nearly constant.

Antonine Plague 165-180 © &
Plague of Justinian 541.542 30-50M .

Japanese Smallpox Epidemic 735-737 *

Black Death (Bubonic Plague) 200M
1347.1351

Here are some of history's most
deadly pandemics, from the
Antonine Plague to COVID-19.

Smallpox 56M
1520

i cltles across Europe

17th Century Great Plagues =M
1600

18th Century Great Plagues 600K
1700

Cholera 6 outbreak 1M

1817-1923 1800
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1855
1850
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LATE 1800s e 191871919
_ Russian Flu 1M
1889-1890
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HIV/AIDS 25-35M
1981 ARESENT Asian Flu 1AM -
1957-1958 1950
. Hong Kong Flu 1M
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sﬁﬁf;@?' Swine Flu 200K
MERS 850 . 2009-2010
2012—PRESET4T' Ebola 11.3K 4 1
2014-2016 7 COVID-19 6.3M

2019-10:00am PT, JULY 08, 2022 [ONGOING]

2025

DEATH TOLL
[HIGHEST TO LOWEST]

200M

Black Death (Bubonic Plague)
1347-1351

N A
The plague originated

in rats and spread to
humans via infected fleas.

25-35M 12M 6.3M* 3M 1M
HIV/AIDS The Third Plague COVID-19 Antonine 17th Century Asian Flu
1981-PRESENT 1855 2019-10:00am PT,  Plague Great Plagues  1957.1958
JULY 08, 2022 165-180 1600
[ONGOING]

The outbreak wiped

out 30-50% of Europe's
population. It took more than
200 years for the continent's
population to recover.

L2 ® e e

™M

56M
Smallpox 40-50M
1520 Spanish Flu
1918-1919

Smallpox killed an estimated 90% of
Native Americans. In Europe during the
1800s, an estimated 400,000 people
were being killed by smallpox annually.
The first ever vaccine was created to
ward off smallpox.

C e e

1 600K 200K 100-150K
Cholera 6 Japanese 18th Century Swine Flu Yellow Fever
Great Plagues 2009-2010 LATE 1800s 2014-2016
1817-.1923 735-737 1700
*Johns Hopkins University estimates
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Sources:
€DC, WHO, BBC

Encyclopedia Britannica
Johns Hopkins University

WHO officlally declared COVID-19
a pandemic on Mar 11, 2020.

It Is hard to calculate f st
the impact of COVID-19 because

the

medicine,
and data is stlll cor

g In

“Johns Hopkins University estimates

30-50M

Plague of Justinian
541.542

The death toll of this plague
is still under debate as new
evidence is uncovered, but
many think it may have
helped hasten the fall of
the Roman Empire.
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[DEATH TOLL AS A PERCENT OF THE POPULATION]

Pandemi:: % of Population Deavth toll Population Est. Yea'r of Est.
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An MRNA-LNP Vaccine Against a Highly Lethal Bacterial pathogen — .

pestis
F1 capsule

Cafl :
> 1000 |

Pneumonic
Bubonic Human to human transmission
Lymph nodes affected (droplets)
50-60% Mortality Rate Short incubation period

Rapid disease progression
~100% mortality within days if
untreated.

chaperone



Vaccination with a signal-peptide Cafl encoding mRNA-LNP results in
cellular responses without humoral responses
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Kon, E et al. SCIENCE Adv. 2023



Vaccination with ASP-cafl or SP-cafl-hFc encoding mRNA-LNPs results in
strong cellular and humoral responses
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Vaccination with ASP-cafl or SP-cafl-hFc encoding mRNA-LNPs confer full
protection against a lethal Y. pestis challenge
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Kon, E et al. SCIENCE Adv. 2023



RNA based therapeutics

Edit Replace

CRISPR/a59




Targeted CRISPR/Cas9 nanomedicine for
therapeutic genome editing in cancer

Dr. Daniel Rosenblum Dr. Anna Gutkin

Rosenblum D.*, Gutkin A* et. al. Science Advances 2020
Gutkin A*, Rosenblum D.*, Peer D. Nature Biotechnology 2021
Elia U*, Kon E*, Peer D. Nature Biotechnology 2023



CRISPR/Cas9 mediated genome editing

Cas9

Active
Sites




CRISPR/Cas9 mediated genome editing

Cas9 nuclease

Target DNA /4 '

Bin L. et.al, Drug Discovery Today (2019)



Clinical applications of CRISPR/Cas9

Ex vivo editing In vivo editing

Extraction of
T-cells or HSCs

CRISPR/Cas9 ’
manipulatiorf v °

Clonal selection

Viral delivery
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Non-viral delivery

000 g

Expansion

CRISPR/Cas9 | | Cas9 mRNA
|[Cas9/gRNA RNP Plasmid with gRNA

Rosenblum D., Gutkin A. et. al. ADDR (2020) Cas9 nuclease: 160Kda. ~4600b




CRISPR/Cas9 Lipid nanoparticles (cLNPs)

Lipid Manoparticle

Lipid mixture in chanuljﬂ ﬂ
0
y \\\E
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Microfluidic mixer

Cas9 mRNA ‘/\,\
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Rosenblum D., Gutkin A et. al. Science Advances (2020)



cLNPs mechanism of action
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Design and construction of cLNPs

Dlin-MC3-DMA

~20-24b

~4600b




Dr. Srinivas Ramishetti

Ramishetti S, Hazan-Halevy |, Palakuri R et. al. Adv Mater (2020) ™~ -
e}

Dr. Inbal Hazan-Halevi

Dr. Ramesh Palakuri
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Design and construction of cLNPs
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Tumor models

» Murine orthotopic glioblastoma multiforme (GBM)
« Human metastatic ovarian adenocarcinoma




PLK1 gene disruption in two tumor models in vitro

GBM Ovarian cancer
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Local delivery of cLNPs to GBM

GBM cells m» cLNPs “ Gene disruption E»Apoptosis induction
injection injection analysis analysis
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Schematic experimental design: Local delivery
of cLNPs to GBM bearing mice
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Single administration of sgPLK1-cLNPs results in
potent tumor growth inhibition and prolong survival of
GBM bearing mice
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Systemic delivery to metastatic ovarian
adenocarcinoma

 ASSET* incorporation to LNPs.
« Targeting the overexpressed epidermal growth factor receptor (EGFR).

Signal peptide lipidation peptide anti-rat Ig scFv mCherry His tag

Dr. Ranit Kedmi Dr. Nuphar Veiga

*ASSET
Kedmi R., Veiga N. et al. Nature Nanotechnology 2018 Anchored Secondary ScFv Enabling Targeting



Systemic delivery of targeted cLNPs to
metastatic ovarian adenocarcinoma
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Schematic experimental design: Systemic delivery of
targeted cLNPs to metastatic ovarian
adenocarcinoma
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Treatments:
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2. T-sgGFP- cLNPS
3. I-sgPLK1- cLNPS
4. T-sgPLK1-cLNPS



EGFR targeted sgPLK1-cLNPs potently inhibit tumor
growth and increased overall survival In metastatic
OV8 bearing mice
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RNA based therapeutics
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