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MRNA vaccines require no further addition of adjuvant to elicit robust immune responses
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Safe and effective vaccines must stimulate the innate immune system at an appropriate level
such that they achieve a balance between immunogenicity and reactogenicity



How do mRNA vaccines (nheed to) activate the innate immune system?
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Relevance of understanding the adjuvanticity of mMRNA-LNP vaccines

Billions of mMRNA vaccine doses have been administered

[l Our duty as scientists to keep on investigating the mode of act
and safety of mRNA vaccines and to inform the public

Understanding the innate immune mechanisms of mRNA vaccines
will be key to yield further improvements in this technology

[l Development of less reactogenic and/or more potent vaccines

[ Tailored mRNA vaccine designs depending on its therapeutic use
(e.g. immunogenic vs non-immunogenic products)




Blame the Messenger

1950-60s:  RNA (Viruses) — Infected cells make “INTERFERON” (IFN)
= |FN reaction inhibits viral replication — blocks viral RNA translation

Mechanism of Action of Interferon
l. Relationship with Viral Ribonucleic Acid

P. DE SOMER, A. PRINZIE, P. DENYS, Jr, axp E. SCHONNE

Rega Institute for Medical Research, Department of Virology, University of Louvain,
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Accepted September 26, 1961

The mechanism of action of interferon has been investigated in two different cell
systems, with concordant results. Interferon is able to suppress the one-cycle synthesis
of poliovirus in embryonated eggs inoculated with infectious polio ribonucleic acid
(RNA). This observation represents the basis of a sensitive method for quantitative
bioassay of interferon activity. Interferon-treated chick embryo cells infected with
Western equine encephalitis (WEE) virus do not yield detectable infectious viral
RNA, as shown by extraction with cold phenol. It appears that interferon action occurs
within the cell, after penetration of virus and before formation of mature virus par-
ticles. A close relationship with viral RNA metabolism is suggested.



Blame the Messenger

1950-60s:  RNA (Viruses) — Infected cells make “INTERFERON” (IFN)
= |FN reaction inhibits viral replication — blocks viral RNA translation

Since 1990s: Discovery of PATHOGEN RECOGNITION RECEPTORS involved in RNA sensing

= Double stranded (ds)RNA is recognized by TLR3, RIG-I, MDA-5, PKR, OAS etc.
= Uridine-containing RNA is recognized by TLR7(/8 in humans)
= Cap1 structure is needed to avoid recognition by IFIT1 (in sSRNA) & RIG-I (in dsRNA)

PROBLEM : Anti RNA-response can jeopardize the translation, safety & efficacy of mRNA vaccines/therapeutics

Balance? The type | IFN response can limit the antigen availability
It can also be a potent driver of immunity - self-adjuvant properties

SOLUTION?

2005-... : MODIFIED URIDINES or uridine depletion reduce RNA sensing and improve translation
= Avoids recognition by TLR7/8, PKR, OAS... (Karikd, Weissman et al.)
= Even so, that nucleoside-modified mRNA is (was) claimed to be non-immunogenic



CASE I: Different COVID-19 mRNA vaccine candidates

All using iLNP carriers

Uridine-modified

Moderna - Spikevax  Pfizer/BioNTech - Comirnaty
Dose: 100 pg Dose: 30 ug
Efficacy*: ~95% Efficacy: ~95%

Unmodified
CureVac - CVnCoV Providence - PTX-COVID19-B
Dose: 12 ug Dose: 40 ug

Efficacy: ~47%
2nd generation

Non-inferior to Comirnaty
in Phase 2 trial

Self-amplifying

Arcturus- ARCT-154 Imperial - LNP-nCoVsaRNA

Dose: 0.1-10 pg
Phase 1. Low immunogenicity

Dose: 5 ug
Efficacy: ~55%

*Prevention against symptomatic COVID-19 disease




CASE lI: Seemingly similar mRNA products for different applications

moderna
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Uridine-modified-LNP

Viral diseases

MRNA-1273 - Spikevax
Dose: 100 pg IM
Efficacy*: ~95%

Prevention of disease/infection
* Neutralizing antibodies
e Tcell responses

Uridine-modified-LNP

Cancer vaccines

MRNA-4157 (Merck)
Dose: 1000 pg IM
Phase 2 stage

Destroy tumors/ memory for relapse
e CD8 & CDA4 T cell responses
* NKcells ...

Uridine-modified-LNP

MRNA-3927
Dose: 600 pg/kg IV
Phase 2 stage

Therapeutics

Protein production
* Avoid innate immunity
as it jeopardize safety & function




BNT162b2 is still capable of inducing a transient type | IFN response
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Fig. 7: MDAS5-IFNAR1 axis isimportant for BNT162b2-induced CD8" T cell response.
Li et al. Nat. Immunol.. 2022

From: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine




Keep it clean or a bit dirty
T7 polymerase gives rise to CONTAMINANTS in the form of short and long double stranded RNA (dsRNA)
= dsRNA can strongly contribute to the innate immune response

* Need for additional purifications methods: HPLC, Cellulose purification, RNase Il
= Alternative: optimization of T7 IVT reaction (e.g. Moderna published on T7 mutant)

Figure 3: Analysis of innate immune activation by mRNA-LNPs.

From: Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge

a IL-6 (pg mI™") b IFN-c. (pg mi™") Cc TNF-o. (pg mi™")
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Unpurified
mRNA-LNP
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Post injection time
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C57BI/6 mice were i.v. injected with a1 mg kg ! dose of nucleoside-modified, FPLC-purified Luc mRNA-LNPs; unpurified, nucleoside-modified Luc mRNA-
LNPs (1mg kg ™) (positive control) and phosphate buffered saline (PBS) (negative control). Animals were bled 2 and 4 h post injection and interleukin-6 (a),
IFN-a (b) and tumour necrosis factor-a (¢) levels were measured in plasma by Luminex assay. Error bars are s.e.m. Statistical analysis: one-way analysis of
variance with Bonferroni correction, P<0.01in comparisons of PBS to non-purified mRNA-LNPs and non-purified mRNA-LNPs to purified mRNA-LNPs.
Group size is five animals.

Pardi et al. Nat. Commun. 2017



Percentage dsRNA (w/w)

Impact of dsRNA content on mRNA-ILNP therapeutics

Fig. 5:Invitro and in vivo performance of mRNAs synthesized by WT and G47A + 884G
T7 RNAPs.

From: An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts
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Keep it clean or a bit dirty

Impact of dsRNA in mRNA products/vaccines

(Covid-19) Vaccines: Presence of dsRNA content?
Dirty secret ? Explanation for adjuvant effects,
and/or side effects?

Therapeutics: Get rid of dsRNAs !!!
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Human type | IFN deficiency does not impair B cell
response to SARS-CoV-2 mRNA vaccination
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ILNPs were first optimized for i.v. delivery of siRNA to hepatocytes
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Empty iLNPs (can) provide a strong adjuvant activity to (mMRNA) vaccines

Combination of protein antigen with iLNPs as adjuvants
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Empty iLNPs (can) provide a strong adjuvant activity to (mMRNA) vaccines
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Figure 7. IL-6 is crucial for LNP-induced GC reactions
(A) BALB/c mice received a single IM immunization with 10 ng rHA adjuvanted with eLNP or AddaVax.

Alameh et al. Immunity 2021



Impact of ionizable lipid on pro-inflammatory response
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Figure 5. Evaluation of ionizable lipids following IM administration in HA vaccine model. Mice injected IM with 0.2, 1, or 5 ug dose of HA mRNA
LNP on Day 0. A) Anti-HA IgG antibody levels on Day 28 post-dose were measured by ELISA. B) Quantification of plasma MCP-1 at 6 h post-dose by
ELISA. N =4 BALB/c mice per group. Error bars are S.E.M. **p < 0.01; ***p < 0.001; ****p < 0.0001 based on two-way ANOVA with Tukey adjustment

for multiple testing correction.

Adv. Mater. 2023, 2209624 2209624 (8 of 12)

© 2023 Genevant Sciences Corporation. Advanced Materials published by Wiley-VCH GmbH
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Innate immune cell dynamics upon administration of mMRNA-ILNP vaccines

A Recruitment to injection site B Lymphatic Draining lymph node
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* How are mRNA-LNPs taken up by immune cells?
« Which innate immune cell types are responsible for antigen presentation ?
* How are iLNP sensed by the innate immune system ?

« Which innate immune pathways contribute to reactogenic versus immunogenic effects?

Verbeke, R., Hogan, M.J., Loré, K., Pardi, N. et al. Inmunity 2022



The path to next generation mRNA-ILNP vaccines

Many variables can affect the reactogenicity and immunogenicity of mRNA vaccines
Need for standardization

= mRNA: Modified vs unmodified, method of purification, dsRNA content, Cap structure etc.
» Lipid carrier: LPX # LNP, LNP1, LNP2... (disclose identity of lipids, molar ratios...)

Opportunity

= Multiple possible paths to develop mRNA vaccines that hit the sweet spot of immune activation
(that can hit a sweeter spot)

Could mRNA vaccines benefit from the addition of adjuvantia?
= To improve durability of adaptive immune responses?
= To provide dose-sparing effects?

= To empower cellular immunity?

TEASER Wednesday
4:30 PM - 6:30 PM us PST Tech Session 2: Immuno Delivery
Location: Champagne 1 & 2



Galsome approach to strengthen mRNA vaccines

Lipid nanoparticle (LNP) for co-delivery of:

» Nucleoside-modified mMRNA encoding antigens
immunosilent -> Limited type | IFN activity
Better tolerability and translation

» a-Galactosylceramide (adjuvant)
Anchored in lipid carrier (0.01 mol%)

Verbeke R. et al. ACS Nano 2019
W02020/058239
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Benchmark study with SM-102 mRNA LNPs
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Tumor growth (mm’)
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Proof of concept of Galsome potential for intracellular bacteria
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Baxerna project - development of bacterial mMRNA vaccines
(EU funded — 9 million)
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